Chaos synchronization of fractional-order differential systems

被引:63
|
作者
Li, CP [1 ]
Deng, WH
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
关键词
synchronization; fractional order; Duffing system; Lorenz system; Rossler system;
D O I
10.1142/S0217979206033620
中图分类号
O59 [应用物理学];
学科分类号
摘要
Chaos synchronization of the Duffing, Lorenz and Rossler systems with fractional orders are studied theoretically and numerically. Three methods are applied in this paper: combination of active-passive decomposition (APD) and one-way coupling methods, Pecora-Carroll method, bidirectional coupling method. The sufficient conditions of achieving synchronization between two identical fractional systems are derived by using the Laplace transform theory. Numerical simulations demonstrate the effectiveness of the proposed synchronization schemes for these fractional systems.
引用
收藏
页码:791 / 803
页数:13
相关论文
共 50 条
  • [1] Synchronization in fractional-order differential systems
    Zhou, TS
    Li, CP
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2005, 212 (1-2) : 111 - 125
  • [2] Chaos Synchronization of Fractional-Order Lur'e Systems
    Bouridah, Mohammed Salah
    Bouden, Toufik
    Yalcin, Mustak Erhan
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (14):
  • [3] Chaos Synchronization of Fractional-Order Chaotic Systems With Input Saturation
    Khamsuwan, Pitcha
    Sangpet, Teerawat
    Kuntanapreeda, Suwat
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (09):
  • [4] COEXISTENCE OF SOME CHAOS SYNCHRONIZATION TYPES IN FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS
    Ouannas, Adel
    Abdelmalek, Salem
    Bendoukha, Samir
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [5] On fractional-order discrete-time systems: Chaos, stabilization and synchronization
    Khennaoui, Amina-Aicha
    Ouannas, Adel
    Bendoukha, Samir
    Grassi, Giuseppe
    Lozi, Rene Pierre
    Viet-Thanh Pham
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 119 : 150 - 162
  • [6] Chaos synchronization between two different fractional-order hyperchaotic systems
    Pan, Lin
    Zhou, Wuneng
    Zhou, Long
    Sun, Kehui
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (06) : 2628 - 2640
  • [7] Chaos synchronization in fractional differential systems
    Zhang, Fengrong
    Chen, Guanrong
    Li, Changpin
    Kurths, Juergen
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1990):
  • [8] Synchronization of Fractional-Order Hyperchaotic Systems via Fractional-Order Controllers
    Li, Tianzeng
    Wang, Yu
    Yang, Yong
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [9] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [10] Chaos and synchronization of the fractional-order Chua's system
    Zhu, Hao
    Zhou, Shangbo
    Zhang, Jun
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (04) : 1595 - 1603