Chaos Synchronization of Fractional-Order Lur'e Systems

被引:9
|
作者
Bouridah, Mohammed Salah [1 ]
Bouden, Toufik [1 ]
Yalcin, Mustak Erhan [2 ]
机构
[1] Univ Mohamed Seddik Benyahia Jijel, Dept Automat, NDT Lab, BP 98, Ouled Aissa 18000, Jijel, Algeria
[2] Istanbul Tech Univ, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey
来源
关键词
Fractional-order; synchronization; Lur’ e systems; linear matrix inequality; MASTER-SLAVE SYNCHRONIZATION; FEEDBACK; CRITERIA; BIFURCATION; HYPERCHAOS; STABILITY;
D O I
10.1142/S0218127420502065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on some essential concepts of fractional calculus and the theorem related to the fractional extension of Lyapunov direct method, we present in this paper a synchronization scheme of fractional-order Lur'e systems. A quadratic Lyapunov function is chosen to derive the synchronization criterion. The derived criterion is a suffcient condition for the asymptotic stability of the error system, formulated in the form of linear matrix inequality (LMI). The controller gain can be achieved by solving the LMI. The proposed scheme is illustrated for fractional-order Chua's circuits and fractional-order four-cell CNN. Numerical results, which agree well with the proposed theorem, are given to show the effectiveness of this scheme.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Chaos synchronization of fractional-order differential systems
    Li, CP
    Deng, WH
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (07): : 791 - 803
  • [2] Chaos Synchronization of Fractional-Order Chaotic Systems With Input Saturation
    Khamsuwan, Pitcha
    Sangpet, Teerawat
    Kuntanapreeda, Suwat
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (09):
  • [3] On fractional-order discrete-time systems: Chaos, stabilization and synchronization
    Khennaoui, Amina-Aicha
    Ouannas, Adel
    Bendoukha, Samir
    Grassi, Giuseppe
    Lozi, Rene Pierre
    Viet-Thanh Pham
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 119 : 150 - 162
  • [4] Chaos synchronization between two different fractional-order hyperchaotic systems
    Pan, Lin
    Zhou, Wuneng
    Zhou, Long
    Sun, Kehui
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (06) : 2628 - 2640
  • [5] Mean-square bounded synchronization of fractional-order chaotic Lur'e under attack
    Mo, Wenjun
    Bao, Haibo
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 641
  • [6] Synchronization of Fractional-Order Hyperchaotic Systems via Fractional-Order Controllers
    Li, Tianzeng
    Wang, Yu
    Yang, Yong
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [7] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [8] Chaos and synchronization of the fractional-order Chua's system
    Zhu, Hao
    Zhou, Shangbo
    Zhang, Jun
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (04) : 1595 - 1603
  • [9] Chaos synchronization of the fractional-order Chen's system
    Zhu, Hao
    Zhou, Shangbo
    He, Zhongshi
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (05) : 2733 - 2740
  • [10] Chaos synchronization of optical systems via a fractional-order sliding mode controller
    Boubellouta, Amina
    Boulkroune, Abdesselem
    [J]. 2017 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING - BOUMERDES (ICEE-B), 2017,