The Stability of the Equilibrium of Planar Hamiltonian and Reversible Systems

被引:0
|
作者
Bin Liu
机构
[1] Peking University,LMAM, School of Mathematical Sciences
关键词
Stability of the equilibrium; Hamiltonian systems; reversible systems; quasi-periodic functions; invariant curves;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the stability of the equilibrium of planar systems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^\prime = X(x,y,t), \quad y^\prime = Y(x,y,t),$$\end{document} where X and Y are real analytic in x, y, and t, and quasi-periodic in t with frequencies (ω1,...,ωn). Under some reasonable assumptions, we obtain a sufficient and necessary condition.
引用
收藏
页码:975 / 990
页数:15
相关论文
共 50 条
  • [31] On stability of equilibrium points in nonlinear fractional differential equations and fractional Hamiltonian systems
    Keshtkar, Fatemeh
    Erjaee, Gholamhussian
    Boutefnouchet, Mahmoud
    [J]. COMPLEXITY, 2015, 21 (02) : 93 - 99
  • [32] A Note on a Class of Reversible Hamiltonian Systems
    Rabinowitz, Paul H.
    [J]. ADVANCED NONLINEAR STUDIES, 2009, 9 (04) : 815 - 823
  • [33] Homoclinic bifurcations in reversible Hamiltonian systems
    Francisco, Gerson
    Fonseca, Andre
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (02) : 654 - 661
  • [34] Limit Cycles in Planar Piecewise Linear Hamiltonian Systems with Three Zones Without Equilibrium Points
    Fonseca, Alexander Fernandes
    Llibre, Jaume
    Mello, Luis Fernando
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (11):
  • [35] Linearizability of planar polynomial Hamiltonian systems
    Arcet, Barbara
    Gine, Jaume
    Romanovski, Valery G.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 63
  • [36] A theorem on the equilibrium thermodynamics of Hamiltonian systems
    Ponno, A
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 359 : 162 - 176
  • [37] Brake Orbits of a Reversible Even Hamiltonian System Near an Equilibrium
    Zhong Jie LIU
    Fan Jing WANG
    Duan Zhi ZHANG
    [J]. Acta Mathematica Sinica,English Series, 2022, (01) : 263 - 280
  • [38] Brake Orbits of a Reversible Even Hamiltonian System Near an Equilibrium
    Liu, Zhong Jie
    Wang, Fan Jing
    Zhang, Duan Zhi
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (01) : 263 - 280
  • [39] Stability of Equilibrium Points for a Hamiltonian Systems with One Degree of Freedom in One Degenerate Case
    Gutierrez, Rodrigo
    Vidal, Claudio
    [J]. REGULAR & CHAOTIC DYNAMICS, 2017, 22 (07): : 880 - 892
  • [40] Stability of Equilibrium Points for a Hamiltonian Systems with One Degree of Freedom in One Degenerate Case
    Rodrigo Gutierrez
    Claudio Vidal
    [J]. Regular and Chaotic Dynamics, 2017, 22 : 880 - 892