We completely characterize Birkhoff-James orthogonality with respect to numerical radius norm in the space of bounded linear operators on a complex Hilbert space. As applications of the results obtained, we estimate lower bounds of numerical radius for n×n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\times n$$\end{document} operator matrices, which improve on and generalize existing lower bounds. We also obtain a better lower bound of numerical radius for an upper triangular operator matrix.
机构:
Univ Zagreb, Fac Sci, Dept Math, Bijenicka Cesta 30, Zagreb 10000, CroatiaUniv Zagreb, Fac Sci, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia
Arambasic, Ljiljana
Rajic, Rajna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Zagreb, Fac Min Geol & Petr Engn, Pierottijeva 6, Zagreb 10000, CroatiaUniv Zagreb, Fac Sci, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia