We consider the singularly perturbed system \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\dot x$$
\end{document}=εf(x,y,ε,λ), \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\dot y$$
\end{document}=g(x,y,ε,λ). We assume that for small (ε,λ), (0,0) is a hyperbolic equilibrium on the normally hyperbolic centre manifold y=0 and that y0(t) is a homoclinic solution of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\dot y$$
\end{document}=g(0,y,0,0). Under an additional condition, we show that there is a curve in the (ε,λ) parameter space on which the perturbed system has a homoclinic orbit also. We investigate the transversality properties of this orbit and use our results to give examples of 4 dimensional systems with Sil'nikov saddle-focus homoclinic orbits.