Trend analysis of variations in carbon stock using stock big data

被引:0
|
作者
Yanbin Wu
Yiqiang Guo
Lin Liu
Ni Huang
Li Wang
机构
[1] Hebei University of Economics and Business,College of Management Science and Engineering
[2] Ministry of Land and Resources,Land Consolidation and Rehabilitation Center
[3] Ministry of Land and Resources,Key Laboratory of Land Consolidation and Rehabilitation
[4] Shijiazhuang Engineering and Technology School,The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth
[5] Chinese Academy of Sciences,undefined
来源
Cluster Computing | 2017年 / 20卷
关键词
Land use; Carbon stock; Trend analysis; Big data;
D O I
暂无
中图分类号
学科分类号
摘要
Changes in land use affect the terrestrial carbon stock through changes in the land cover. Research on land use and analysis of variations in carbon stock have practical applications in the optimization of land use and the mitigation of climate change effects. This study was conducted in Baixiang and Julu counties in the Taihang Piedmont by employing the trend analysis method to characterize the variation in county land use and carbon stock. The findings show that in both counties, agricultural and unused land areas decreased while built-up land area increased, and the reduction in cropland was the main reason behind the agricultural land reduction. An inflection point appeared on the cropland curves of Julu, because the cropland area decreased by 1576.97 hm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document} from 2004 to 2006. Cropland area in Baixiang decreased from 1996 to 1998 by a total of 129.89 hm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document} and then remained relatively stable after 1998. The total carbon storage and variation in land use in the two counties displayed similar trends. Total carbon reserves in Julu increased by 2.76 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document} tC (carbon equivalent), while those in Baixiang decreased by 0.63 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document} tC. Carbon stock of built-up land in Julu and Baixiang increased by 2.44 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document} and 1.22 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document} tC, respectively.
引用
收藏
页码:989 / 1005
页数:16
相关论文
共 50 条
  • [21] Research on Dynamic Characteristics of Stock Market Based on Big Data Analysis
    Yang, Ping
    Hou, Xiaohong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
  • [22] Price Trend Prediction of Stock Market Using Outlier Data Mining Algorithm
    Zhao Lei
    Wang Lin
    PROCEEDINGS 2015 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING BDCLOUD 2015, 2015, : 93 - 98
  • [23] Data fusion with factored quantization for stock trend prediction using neural networks
    Chaudhari, Kinjal
    Thakkar, Ankit
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (03)
  • [24] Sentiment Analysis of Twitter Data within Big Data Distributed Environment for Stock Prediction
    Skuza, Michal
    Romanowski, Andrzej
    PROCEEDINGS OF THE 2015 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2015, 5 : 1349 - 1354
  • [25] Performance Evaluation of Machine Learning Algorithms for Stock Price and Stock Index Movement Prediction Using Trend Deterministic Data Prediction
    Khanna, Munish
    Kulshrestha, Mohak
    Singh, Law K.
    Thawkar, Shankar
    Shrivastava, Kapil
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2022, 13 (01)
  • [26] Analysis of Stock Market using Streaming data Framework
    Umadevi, K. S.
    Gaonka, Abhijitsingh
    Kulkarni, Ritwik
    Kannan, R. Jagadeesh
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 1388 - 1390
  • [27] Is There Any Overtrading in Stock Markets? The Moderating Role of Big Five Personality Traits and Gender in a Unilateral Trend Stock Market
    Zhang, Jian
    Wang, Haocheng
    Wang, Limin
    Liu, Shuyi
    PLOS ONE, 2014, 9 (01):
  • [28] A big data framework for stock price forecasting using fuzzy time series
    Wang, Weina
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 10123 - 10134
  • [29] A big data framework for stock price forecasting using fuzzy time series
    Weina Wang
    Multimedia Tools and Applications, 2018, 77 : 10123 - 10134
  • [30] Measuring news media sentiment using big data for Chinese stock markets
    Shen, Shulin
    Xia, Le
    Shuai, Yulin
    Gao, Da
    PACIFIC-BASIN FINANCE JOURNAL, 2022, 74