Bayesian inversion for nanowire field-effect sensors

被引:0
|
作者
Amirreza Khodadadian
Benjamin Stadlbauer
Clemens Heitzinger
机构
[1] Vienna University of Technology (TU Wien),Institute for Analysis and Scientific Computing
[2] Leibniz University Hannover,Institute of Applied Mathematics
[3] Arizona State University,School of Mathematical and Statistical Sciences
来源
关键词
Silicon nanowire sensors; Markov chain Monte Carlo; Adaptive Metropolis–Hastings algorithm; Stochastic drift–diffusion–Poisson–Boltzmann system;
D O I
暂无
中图分类号
学科分类号
摘要
Nanowire field-effect sensors have recently been developed for label-free detection of biomolecules. In this work, we introduce a computational technique based on Bayesian estimation to determine the physical parameters of the sensor and, more importantly, the properties of the analyte molecules. To that end, we first propose a PDE-based model to simulate the device charge transport and electrochemical behavior. Then, the adaptive Metropolis algorithm with delayed rejection is applied to estimate the posterior distribution of unknown parameters, namely molecule charge density, molecule density, doping concentration, and electron and hole mobilities. We determine the device and molecules properties simultaneously, and we also calculate the molecule density as the only parameter after having determined the device parameters. This approach makes it possible not only to determine unknown parameters, but it also shows how well each parameter can be determined by yielding the probability density function (pdf).
引用
收藏
页码:147 / 159
页数:12
相关论文
共 50 条
  • [1] Bayesian inversion for nanowire field-effect sensors
    Khodadadian, Amirreza
    Stadlbauer, Benjamin
    Heitzinger, Clemens
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2020, 19 (01) : 147 - 159
  • [2] Optimal design of nanowire field-effect troponin sensors
    Khodadadian, Amirreza
    Hosseini, Kiarash
    Manzour-ol-Ajdad, Ali
    Hedayati, Marjan
    Kalantarinejad, Reza
    Heitzinger, Clemens
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 87 : 46 - 56
  • [3] Semiconducting Nanowire Field-Effect Transistor Biomolecular Sensors
    Stern, Eric
    Vacic, Aleksandar
    Reed, Mark A.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (11) : 3119 - 3130
  • [4] Fully depleted nanowire field-effect transistor in inversion mode
    Hayden, Oliver
    Bjoerk, Mikael T.
    Schmid, Heinz
    Riel, Heike
    Drechsler, Ute
    Karg, Siegfried F.
    Loertscher, Emanuel
    Riess, Walter
    [J]. SMALL, 2007, 3 (02) : 230 - 234
  • [5] Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors
    Feng, Ping
    Shao, Feng
    Shi, Yi
    Wan, Qing
    [J]. SENSORS, 2014, 14 (09) : 17406 - 17429
  • [6] Rational Design of Field-Effect Sensors Using Partial Differential Equations, Bayesian Inversion, and Artificial Neural Networks
    Khodadadian, Amirreza
    Parvizi, Maryam
    Teshnehlab, Mohammad
    Heitzinger, Clemens
    [J]. SENSORS, 2022, 22 (13)
  • [7] Nanowire field-effect transistor
    Wernersson, Lars-Erik
    Lind, Erik
    Samuelson, Lars
    Lowgren, Truls
    Ohlsson, Jonas
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (4B): : 2629 - 2631
  • [8] Predictive simulations and optimization of nanowire field-effect PSA sensors including screening
    Baumgartner, Stefan
    Heitzinger, Clemens
    Vacic, Aleksandar
    Reed, Mark A.
    [J]. NANOTECHNOLOGY, 2013, 24 (22)
  • [9] Nanowire Tunneling Field-Effect Transistors
    Knoch, Joachim
    [J]. SEMICONDUCTORS AND SEMIMETALS, VOL 94: SEMICONDUCTOR NANOWIRES II: PROPERTIES AND APPLICATIONS, 2016, 94 : 273 - 295
  • [10] ZnO Nanowire Field-Effect Transistors
    Chang, Pai-Chun
    Lu, Jia Grace
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (11) : 2977 - 2987