A Novel Approach for the Design of Optimum IIR Differentiators Using Fractional Interpolation

被引:0
|
作者
Om Prakash Goswami
Tarun K. Rawat
Dharmendra K. Upadhyay
机构
[1] Netaji Subhas Institute of Technology,
关键词
s-to-z transform; Al-Alaoui operator; Fractional interpolation; Optimized digital differentiators;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a novel method for designing an optimum infinite impulse response digital differentiator of the first and second orders is presented. The proposed method interpolates bilinear transform and rectangular transform fractionally, and then, unknown variables of the generalized equation are optimized using the genetic algorithm. The results obtained by the proposed designs are superior to all state-of-the-art designs in terms of magnitude responses. The first-order and second-order differentiator attains mean relative magnitude error as low as -27.702\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,27.702$$\end{document} (dB) and -35.04\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,35.04$$\end{document} (dB), respectively, in the complete Nyquist range. Besides, suggested low-order, differentiator design equations can also be optimized of any desired Nyquist frequency range, which makes it suitable for real-time applications.
引用
收藏
页码:1688 / 1698
页数:10
相关论文
共 50 条
  • [31] Accurate Design of Digital Fractional Order Differentiators using Improved Particle Swarm Optimization
    Mahata, Shibendu
    Kar, Rajib
    Mandal, Durbadal
    Saha, Suman Kumar
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 1171 - 1174
  • [32] Optimal design of L1-norm based IIR digital differentiators and integrators using the bat algorithm
    Aggarwal, Apoorva
    Rawat, Tarun K.
    Upadhyay, Dharmendra K.
    IET SIGNAL PROCESSING, 2017, 11 (01) : 26 - 35
  • [33] Fractional order digital differentiators design using exponential basis function neural network
    Liao, Ke
    Yuan, Xiao
    Pu, Yi-Fei
    Zhou, Ji-Liu
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 2, PROCEEDINGS, 2006, 3972 : 735 - 740
  • [34] Design of IIR Allpass Fractional-Delay Fractional Hilbert Transformer Using Complex Cepstrum
    Pei, Soo-Chang
    Lin, Huei-Shan
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 737 - 740
  • [35] Design of IIR Fractional Differentiator with Peano Kernel
    Pei, Soo-Chang
    Wang, Peng-Hua
    Lin, Chia-Huei
    2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2008), VOLS 1-4, 2008, : 862 - +
  • [36] Maxflat Fractional Delay IIR Filter Design
    Zhang, Xi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (08) : 2950 - 2956
  • [37] Design of IIR Lowpass Differentiators Based on Second-Order Allpass Filter Application
    Ivan Krstić
    Circuits, Systems, and Signal Processing, 2022, 41 : 1803 - 1818
  • [39] A Design of IIR low-pass digital differentiators with flat passband and equiripple stopband
    Yoshida, Takashi
    Aoki, Hiroki
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2021,
  • [40] OPTIMUM FIR AND IIR MULTISTAGE MULTIRATE FILTER DESIGN
    CHU, S
    BURRUS, CS
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1983, 2 (03) : 361 - 386