In this paper we give a new construction of highly nonlinear vectorial Boolean functions. This construction is based on coding theory, more precisely we use concatenation to construct Boolean functions from codes over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{F}_q$\end{document} containing a first-order generalized Reed–Muller code. As it turns out this construction has a very compact description in terms of Boolean functions, which is of independent interest. The construction allows one to design functions with better nonlinearities than known before.