Distribution of Geometric Sequences Modulo 1

被引:0
|
作者
Hajime Kaneko
机构
[1] Kyoto University,Department of Mathematics
来源
Results in Mathematics | 2008年 / 52卷
关键词
11J71; 11R06; 11B85; Distribution modulo 1; geometric progressions; algebraic numbers; Mahler functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\xi{{\alpha}^{n}}||$$\end{document} denote the distance from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi{{\alpha}^{n}}$$\end{document} to the nearest integer. In this paper we obtain a new lower bound for lim \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm sup}_{n\rightarrow\infty} ||\xi{\alpha^{n}}|| $$\end{document} if α is an algebraic irrational number whose conjugates have moduli greater than 1.
引用
收藏
页码:91 / 109
页数:18
相关论文
共 50 条