Distribution of Geometric Sequences Modulo 1

被引:0
|
作者
Hajime Kaneko
机构
[1] Kyoto University,Department of Mathematics
来源
Results in Mathematics | 2008年 / 52卷
关键词
11J71; 11R06; 11B85; Distribution modulo 1; geometric progressions; algebraic numbers; Mahler functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\xi{{\alpha}^{n}}||$$\end{document} denote the distance from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi{{\alpha}^{n}}$$\end{document} to the nearest integer. In this paper we obtain a new lower bound for lim \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm sup}_{n\rightarrow\infty} ||\xi{\alpha^{n}}|| $$\end{document} if α is an algebraic irrational number whose conjugates have moduli greater than 1.
引用
收藏
页码:91 / 109
页数:18
相关论文
共 50 条
  • [1] Distribution of geometric sequences modulo 1
    Kaneko, Hajime
    RESULTS IN MATHEMATICS, 2008, 52 (1-2) : 91 - 109
  • [2] On the Distribution Modulo 1 of Exponential Sequences
    R. K. Akhunzhanov
    Mathematical Notes, 2004, 76 : 153 - 160
  • [3] On the distribution modulo 1 of exponential sequences
    Akhunzhanov, RK
    MATHEMATICAL NOTES, 2004, 76 (1-2) : 153 - 160
  • [4] THE DISTRIBUTION MODULO-1 OF TRIGONOMETRIC SEQUENCES
    LEVEQUE, WJ
    DUKE MATHEMATICAL JOURNAL, 1953, 20 (03) : 367 - 373
  • [5] DISTRIBUTION MODULO-1 OF SOME OSCILLATING SEQUENCES
    BEREND, D
    KOLESNIK, G
    ISRAEL JOURNAL OF MATHEMATICS, 1990, 71 (02) : 161 - 179
  • [6] DISTRIBUTION OF SEQUENCES MODULO ONE
    CATER, FS
    VANDENEY.C
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A52 - &
  • [7] DISTRIBUTION OF SEQUENCES MODULO I
    ZAME, A
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (04): : 697 - &
  • [8] Uniformity of distribution modulo 1 of the geometric mean prime divisor
    Luca, Florian
    Shparlinski, Igor E.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2006, 12 (02): : 155 - 163
  • [9] On the uniform distribution modulo 1 of multidimensional LS-sequences
    Christoph Aistleitner
    Markus Hofer
    Volker Ziegler
    Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 : 1329 - 1344
  • [10] EXTREMAL PROPERTIES OF (EPI)STURMIAN SEQUENCES AND DISTRIBUTION MODULO 1
    Allouche, Jean-Paul
    Glen, Amy
    ENSEIGNEMENT MATHEMATIQUE, 2010, 56 (3-4): : 365 - 401