On the Sum of the Powers of Distance Signless Laplacian Eigenvalues of Graphs

被引:0
|
作者
S. Pirzada
Hilal A. Ganie
A. Alhevaz
M. Baghipur
机构
[1] University of Kashmir,Department of Mathematics
[2] Shahrood University of Technology,Faculty of Mathematical Sciences
[3] University of Hormozgon,Department of Mathematics
关键词
Graph; distance signless Laplacian matrix; distance signless Laplacian eigenvalues; transmission regular; 05C12; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected graph with n vertices, m edges and having distance signless Laplacian eigenvalues ρ1≥ ρ2 ≥ … ≥ ρn≥ 0. For any real number α ≠ 0, let mα(G)=∑i=1nρiα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m_\alpha }\left( G \right) = \sum\nolimits_{i = 1}^n {\rho _i^\alpha } $$\end{document} be the sum of αth powers of the distance signless Laplacian eigenvalues of the graph G. In this paper, we obtain various bounds for the graph invariant mα(G), which connects it with different parameters associated to the structure of the graph G. We also obtain various bounds for the quantity DEL(G), the distance signless Laplacian-energy-like invariant of the graph G. These bounds improve some previously known bounds. We also pose some extremal problems about DEL(G).
引用
收藏
页码:1143 / 1163
页数:20
相关论文
共 50 条
  • [31] COMPUTING THE RECIPROCAL DISTANCE SIGNLESS LAPLACIAN EIGENVALUES AND ENERGY OF GRAPHS
    Alhevaz, A.
    Baghipur, M.
    Ramane, H. S.
    MATEMATICHE, 2019, 74 (01): : 49 - 73
  • [32] A note on sum of powers of the Laplacian eigenvalues of bipartite graphs
    Tian, Gui-Xian
    Huang, Ting-Zhu
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2503 - 2510
  • [33] On the sum of signless Laplacian eigenvalues of a graph
    Ashraf, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4539 - 4546
  • [34] Signless Laplacian eigenvalues and circumference of graphs
    Wang, JianFeng
    Belardo, Francesco
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1610 - 1617
  • [35] A note on the signless Laplacian eigenvalues of graphs
    Wang, Jianfeng
    Belardo, Francesco
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2585 - 2590
  • [36] On Distance Laplacian (Signless) Eigenvalues of Commuting Graphs of Dihedral and Dicyclic Groups
    Pirzada, S.
    Rather, Bilal A.
    Shaban, Rezwan ul
    Bhat, Imran
    Springer Proceedings in Mathematics and Statistics, 2022, 392 : 413 - 425
  • [37] Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs
    Milovanovic, Igor
    Milovanovic, Emina
    Matejic, Marjan
    Altindag, S. B. Bozkurt
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (02) : 259 - 271
  • [38] New bounds for the sum of powers of normalized Laplacian eigenvalues of graphs
    Clemente, Gian Paolo
    Cornaro, Alessandra
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (02) : 403 - 413
  • [39] On Sum of Powers of Normalized Laplacian Eigenvalues and Resistance Distances of Graphs
    Sun, Wenwen
    Chen, Haiyan
    Hu, Mingying
    SSRN, 2022,
  • [40] The sum of the first two largest signless laplacian eigenvalues of trees and unicyclic graphs
    Du, Zhibin
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 449 - 467