Entropy formulation for fractal conservation laws

被引:0
|
作者
Nathaël Alibaud
机构
[1] Université Montpellier II,Département de mathématiques
来源
关键词
35B30; 35L65; 35L82; 35S10; 35S30; Fractional Laplacian; fractal conservation laws; entropy formulation; vanishing viscosity method; error estimates;
D O I
暂无
中图分类号
学科分类号
摘要
Using an integral formula of Droniou and Imbert (2005) for the fractional Laplacian, we define an entropy formulation for fractal conservation laws with pure fractional diffusion of order λ ∈]0, 1]. This allows to show the existence and the uniqueness of a solution in the L∞ framework. We also establish a result of controled speed of propagation that generalizes the finite propagation speed result of scalar conservation laws. We finally let the non-local term vanish to approximate solutions of scalar conservation laws, with optimal error estimates for BV initial conditions as Kuznecov (1976) for λ = 2 and Droniou (2003) for λ ∈]1, 2].
引用
收藏
页码:145 / 175
页数:30
相关论文
共 50 条
  • [1] Entropy formulation for fractal conservation laws
    Alibaud, Nathael
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (01) : 145 - 175
  • [2] A kinetic formulation for multi-branch entropy solutions of scalar conservation laws
    Brenier, Y
    Corrias, L
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02): : 169 - 190
  • [3] Stochastic conservation laws: Weak-in-time formulation and Strong entropy condition
    Biswas, Imran H.
    Majee, Ananta K.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (07) : 2199 - 2252
  • [4] Entropy for hyperbolic conservation laws
    Dafermos, CM
    [J]. ENTROPY-BOOK, 2003, : 107 - 120
  • [5] Entropy for hyperbolic conservation laws
    Dafermos, CM
    [J]. ENTROPY-BK, 2003, : 107 - 120
  • [6] A NUMERICAL METHOD FOR FRACTAL CONSERVATION LAWS
    Droniou, Jerome
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (269) : 95 - 124
  • [7] A posteriori analysis of an IMEX entropy-viscosity formulation for hyperbolic conservation laws with dissipation
    Chaudhry, Jehanzeb H.
    Shadid, John N.
    Wildey, Timothy
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 129 - 142
  • [8] Γ-Entropy Cost for Scalar Conservation Laws
    Bellettini, Giovanni
    Bertini, Lorenzo
    Mariani, Mauro
    Novaga, Matteo
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) : 261 - 309
  • [9] ENTROPY ESTIMATES FOR CONSERVATION-LAWS
    HEIBIG, A
    [J]. APPLIED MATHEMATICS LETTERS, 1993, 6 (05) : 93 - 97
  • [10] THE PHYSICAL ENTROPY OF SINGLE CONSERVATION LAWS
    (Department of Mathematics
    [J]. Journal of Computational Mathematics, 1998, (05) : 437 - 444