THE PHYSICAL ENTROPY OF SINGLE CONSERVATION LAWS

被引:0
|
作者
(Department of Mathematics
机构
关键词
Conservation laws; Entropy; Entropy production;
D O I
暂无
中图分类号
O414 [热力学与统计物理学];
学科分类号
080701 ;
摘要
By means of the comparisons with the formulas in statistical mechanics and thermodynamics, in this paper it is demonstrated that for the single conservation law tu+xf(u)=0, if the flux function f(u) is convex (or concave), then,the physical entropy is S =-f(u); Furthermore, if we assume this result can begeneralized to any f(u) with two order continuous derivative, from the thermodynamical principle that the local entropy production must be non-negative, one entropy inequality is derived, by which the O.A. Olejnik’s famous E- condition can be explained successfully in physics.
引用
收藏
页码:437 / 444
页数:8
相关论文
共 50 条
  • [1] The physical entropy of single conservation laws
    Lei, GY
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1998, 16 (05) : 437 - 444
  • [2] On uniqueness of solutions to conservation laws verifying a single entropy condition
    Krupa, Sam G.
    Vasseur, Alexis F.
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2019, 16 (01) : 157 - 191
  • [3] Entropy for hyperbolic conservation laws
    Dafermos, CM
    [J]. ENTROPY-BOOK, 2003, : 107 - 120
  • [4] Entropy for hyperbolic conservation laws
    Dafermos, CM
    [J]. ENTROPY-BK, 2003, : 107 - 120
  • [5] Γ-Entropy Cost for Scalar Conservation Laws
    Bellettini, Giovanni
    Bertini, Lorenzo
    Mariani, Mauro
    Novaga, Matteo
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) : 261 - 309
  • [6] Entropy formulation for fractal conservation laws
    Alibaud, Nathael
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (01) : 145 - 175
  • [7] ENTROPY ESTIMATES FOR CONSERVATION-LAWS
    HEIBIG, A
    [J]. APPLIED MATHEMATICS LETTERS, 1993, 6 (05) : 93 - 97
  • [8] Entropy formulation for fractal conservation laws
    Nathaël Alibaud
    [J]. Journal of Evolution Equations, 2007, 7 : 145 - 175
  • [9] Γ -Entropy Cost for Scalar Conservation Laws
    Giovanni Bellettini
    Lorenzo Bertini
    Mauro Mariani
    Matteo Novaga
    [J]. Archive for Rational Mechanics and Analysis, 2010, 195 : 261 - 309
  • [10] ON THE CONCENTRATION OF ENTROPY FOR SCALAR CONSERVATION LAWS
    Bianchini, Stefano
    Marconi, Elio
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (01): : 73 - 88