Influence of dislocations on kink solutions of the double sine-Gordon equation

被引:0
|
作者
S. P. Popov
机构
[1] Russian Academy of Sciences,Dorodnicyn Computing Center
关键词
sine-Gordon equation; double sine-Gordon equation; kink; kink-antikink interaction; wobbler; quasi-spectral method; Runge-Kutta method;
D O I
暂无
中图分类号
学科分类号
摘要
Dependences related to the formation of kinks and their interaction with local perturbations defined as a smooth function of coordinates multiplying the sine of complete argument in the double sine-Gordon equation are studied. It is shown that there are nonstationary kink solutions remaining within the perturbation domain. These solutions consist of two separate 2π-kinks oscillating about the center of the perturbation. The interactions of these kinks with 4π-kinks have a complicated character depending not only on the velocity but also on the phases of the kink pairs. The transmission, capture, and reflection of kinks are investigated. The computations were based on the quasispectral Fourier method and the fourth-order Runge-Kutta method.
引用
收藏
页码:1891 / 1899
页数:8
相关论文
共 50 条
  • [11] Perturbation theory for the kink of the sine-Gordon equation
    Tang, Y
    Wang, W
    [J]. PHYSICAL REVIEW E, 2000, 62 (06) : 8842 - 8845
  • [12] DISCRETENESS EFFECTS ON THE DOUBLE SINE-GORDON KINK
    DINDA, PT
    WILLIS, CR
    [J]. PHYSICAL REVIEW E, 1995, 51 (05): : 4958 - 4977
  • [13] REDUCED SINE-GORDON BREATHER-(ANTI)KINK DYNAMICS AND THE DOUBLE SINE-GORDON SYSTEM
    SALERNO, M
    [J]. PHYSICS LETTERS A, 1989, 134 (07) : 421 - 423
  • [14] On kink-dynamics of the perturbed sine-Gordon equation
    Maksimov, AG
    Pedersen, NF
    Christiansen, PL
    Molkov, JI
    Nekorkin, VI
    [J]. WAVE MOTION, 1996, 23 (02) : 203 - 213
  • [15] Asymptotics for kink propagation in the discrete Sine-Gordon equation
    Cisneros, L. A.
    Minzoni, A. A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (01) : 50 - 65
  • [16] HAMILTONIAN-DYNAMICS OF THE DOUBLE SINE-GORDON KINK
    WILLIS, CR
    ELBATANOUNY, M
    BURDICK, S
    BOESCH, R
    SODANO, P
    [J]. PHYSICAL REVIEW B, 1987, 35 (07): : 3496 - 3505
  • [17] The traveling wave solutions of the perturbed double Sine-Gordon equation
    Yang, Deniu
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (03) : 2241 - 2253
  • [18] ON RECURRENT SOLUTIONS TO THE SINE-GORDON EQUATION
    MURAKAMI, Y
    TAJIRI, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (06) : 2207 - 2208
  • [19] Localization of the sine-Gordon equation solutions
    Porubov, A. V.
    Fradkov, A. L.
    Bondarenkov, R. S.
    Andrievsky, B. R.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 29 - 37
  • [20] Noncontinuous solitary wave solutions for double sine-Gordon equation
    Tian Li-Xin
    Yu Shui-Meng
    Ni Mei-Jie
    [J]. CHINESE PHYSICS LETTERS, 2007, 24 (07) : 1791 - 1794