Convergence of the generalized-α scheme for constrained mechanical systems

被引:0
|
作者
Martin Arnold
Olivier Brüls
机构
[1] Martin Luther University Halle–Wittenberg,NWF III—Institute of Mathematics
[2] University of Liège,Department of Aerospace and Mechanical Engineering
来源
Multibody System Dynamics | 2007年 / 18卷
关键词
DAEs; Generalized-; method;
D O I
暂无
中图分类号
学科分类号
摘要
A variant of the generalized-α scheme is proposed for constrained mechanical systems represented by index-3 DAEs. Based on the analogy with linear multistep methods, an elegant convergence analysis is developed for this algorithm. Second-order convergence is demonstrated both for the generalized coordinates and the Lagrange multipliers, and those theoretical results are illustrated by numerical tests.
引用
收藏
页码:185 / 202
页数:17
相关论文
共 50 条
  • [31] The Lie point symmetry- preserving difference scheme of holonomic constrained mechanical systems
    Zhang Hong-Bin
    Lue Hong-Sheng
    Gu Shu-Long
    [J]. ACTA PHYSICA SINICA, 2010, 59 (08) : 5213 - 5218
  • [32] A dynamic SNS-PFEM with generalized-α method for hydro-mechanical coupled geotechnical problems
    Wang, Ze-Yu
    Jin, Yin -Fu
    Yin, Zhen-Yu
    Wang, Yu-Ze
    [J]. COMPUTERS AND GEOTECHNICS, 2023, 159
  • [33] On the stability of constrained mechanical systems
    Di Franco, Pierluigi
    Scarciotti, Giordano
    Astolfi, Alessandro
    [J]. 2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [34] The generalized-α method applied to conservative Duffing oscillators
    Bonelli, A
    Bursi, OS
    Mancuso, M
    [J]. STRUCTURAL DYNAMICS, VOLS 1 AND 2, 1999, : 133 - 138
  • [35] PAIR OF (GENERALIZED-)DERIVATIONS ON RINGS AND BANACH ALGEBRAS
    Wei, Feng
    Xiao, Zhankui
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 857 - 866
  • [36] GENERALIZED MECHANICAL SYSTEMS
    RODRIGUES, PR
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (22): : 1307 - 1309
  • [37] Convergence of a Generalized Riemann Problem Scheme for the Burgers Equation
    Lukacova-Medvid'ova, Maria
    Yuan, Yuhuan
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (04) : 2215 - 2238
  • [38] WEAK CONVERGENCE OF AN ITERATIVE SCHEME FOR GENERALIZED EQUILIBRIUM PROBLEMS
    Peng, Jian-Wen
    Yao, Jen-Chih
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (03) : 437 - 453
  • [39] On convergence conditions for generalized Persidskii systems
    Mei, Wenjie
    Efimov, Denis
    Ushirobira, Rosane
    Aleksandrov, Alexander
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (06) : 3696 - 3713
  • [40] Generalized-α time integration solutions for hanging chain dynamics
    Gobat, JI
    Grosenbaugh, MA
    Triantafyllou, MS
    [J]. JOURNAL OF ENGINEERING MECHANICS, 2002, 128 (06) : 677 - 687