A variant of the generalized-α scheme is proposed for constrained mechanical systems represented by index-3 DAEs. Based on the analogy with linear multistep methods, an elegant convergence analysis is developed for this algorithm. Second-order convergence is demonstrated both for the generalized coordinates and the Lagrange multipliers, and those theoretical results are illustrated by numerical tests.
机构:
Stanford Univ, Dept Pediat Cardiol, Stanford, CA 94305 USA
Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen, Peoples R ChinaStanford Univ, Dept Pediat Cardiol, Stanford, CA 94305 USA
Liu, Ju
Lan, Ingrid S.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Bioengn, Stanford, CA USAStanford Univ, Dept Pediat Cardiol, Stanford, CA 94305 USA
Lan, Ingrid S.
Tikenogullari, Oguz Z.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USAStanford Univ, Dept Pediat Cardiol, Stanford, CA 94305 USA
Tikenogullari, Oguz Z.
Marsden, Alison L.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Pediat Cardiol, Stanford, CA 94305 USA
Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
Stanford Univ, Dept Bioengn, Stanford, CA USAStanford Univ, Dept Pediat Cardiol, Stanford, CA 94305 USA