Convergence of the generalized-α scheme for constrained mechanical systems

被引:0
|
作者
Martin Arnold
Olivier Brüls
机构
[1] Martin Luther University Halle–Wittenberg,NWF III—Institute of Mathematics
[2] University of Liège,Department of Aerospace and Mechanical Engineering
来源
Multibody System Dynamics | 2007年 / 18卷
关键词
DAEs; Generalized-; method;
D O I
暂无
中图分类号
学科分类号
摘要
A variant of the generalized-α scheme is proposed for constrained mechanical systems represented by index-3 DAEs. Based on the analogy with linear multistep methods, an elegant convergence analysis is developed for this algorithm. Second-order convergence is demonstrated both for the generalized coordinates and the Lagrange multipliers, and those theoretical results are illustrated by numerical tests.
引用
收藏
页码:185 / 202
页数:17
相关论文
共 50 条
  • [1] Convergence of the generalized-α scheme for constrained mechanical systems
    Arnold, Martin
    Bruels, Olivier
    [J]. MULTIBODY SYSTEM DYNAMICS, 2007, 18 (02) : 185 - 202
  • [2] Error analysis of generalized-α Lie group time integration methods for constrained mechanical systems
    Arnold, Martin
    Bruls, Olivier
    Cardona, Alberto
    [J]. NUMERISCHE MATHEMATIK, 2015, 129 (01) : 149 - 179
  • [3] A robust nonsmooth generalized-α scheme for flexible systems with impacts
    Cosimo, Alejandro
    Galvez, Javier
    Cavalieri, Federico J.
    Cardona, Alberto
    Bruls, Olivier
    [J]. MULTIBODY SYSTEM DYNAMICS, 2020, 48 (02) : 127 - 149
  • [4] A nonsmooth generalized-α scheme for flexible multibody systems with unilateral constraints
    Chen, Qiong-zhong
    Acary, Vincent
    Virlez, Geoffrey
    Bruls, Olivier
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 96 (08) : 487 - 511
  • [5] Lie group generalized-α time integration of constrained flexible multibody systems
    Bruls, Olivier
    Cardona, Alberto
    Arnold, Martin
    [J]. MECHANISM AND MACHINE THEORY, 2012, 48 : 121 - 137
  • [6] Convergence of generalized-α time integration for nonlinear systems with stiff potential forces
    Koebis, M. A.
    Arnold, M.
    [J]. MULTIBODY SYSTEM DYNAMICS, 2016, 37 (01) : 107 - 125
  • [7] Strong convergence of a half-explicit Euler scheme for constrained stochastic mechanical systems
    Lindner, Felix
    Stroot, Holger
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 2562 - 2607
  • [8] A strong convergence theorem for generalized-Φ-strongly monotone maps, with applications
    Chidume C.E.
    Nnakwe M.O.
    Adamu A.
    [J]. Fixed Point Theory and Applications, 2019 (1)
  • [9] The Generalized-α Scheme as a Linear Multistep Integrator: Toward a General Mechatronic Simulator
    Bruls, Olivier
    Arnold, Martin
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2008, 3 (04):
  • [10] A note on the accuracy of the generalized-α scheme for the incompressible Navier-Stokes equations
    Liu, Ju
    Lan, Ingrid S.
    Tikenogullari, Oguz Z.
    Marsden, Alison L.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (02) : 638 - 651