Assuming that 0 < α p < N, p, q ∈(1,∞), we construct a class of functions in the Besov space
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B^{{p,q}}_{\alpha } \,({\user2{\mathbb{R}}}^{N} )$$\end{document} such that the Hausdorff dimension of their singular set is equal to N − α p. We show that these functions are maximally singular, that is, the Hausdorff dimension of the singular set of any other Besov function in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B^{{p,q}}_{\alpha } \,({\user2{\mathbb{R}}}^{N} )$$\end{document} is ≦ N − α p. Similar results are obtained for Lizorkin-Triebel spaces
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F^{{p,q}}_{\alpha } \,({\user2{\mathbb{R}}}^{N} )$$\end{document} and for the Hardy space
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^{1} \,({\user2{\mathbb{R}}}^{N} )$$\end{document}. Some open problems are listed.