Maximally singular functions in Besov spaces

被引:5
|
作者
Zubrinic, Darko [1 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Dept Appl Math, Zagreb 10000, Croatia
关键词
D O I
10.1007/s00013-006-1655-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming that 0 < alpha p < N, p, q is an element of (1,infinity), we construct a class of functions in the Besov space B-alpha(p,q)(R-N) such that the Hausdorff dimension of their singular set is equal to N - alpha p. We show that these functions are maximally singular, that is, the Hausdorff dimension of the singular set of any other Besov function in B-alpha(p,q)(R-N) is <= N - alpha p. Similar results are obtained for Lizorkin-Triebel spaces F-alpha(p,q)(R-N) and for the Hardy space H-1(R-N). Some open problems are listed.
引用
收藏
页码:154 / 162
页数:9
相关论文
共 50 条