Drag reduction via turbulent boundary layer flow control

被引:0
|
作者
Adel Abbas
Gabriel Bugeda
Esteban Ferrer
Song Fu
Jacques Periaux
Jordi Pons-Prats
Eusebio Valero
Yao Zheng
机构
[1] Universidad Politécnica de Madrid,School of Aeronautics, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio de la Universidad Politécnica de Madrid (ETSIAE
[2] International Center for Numerical Methods in Engineering (CIMNE),UPM)
[3] Universitat Politècnica de Catalunya. BarcelonaTech,Civil and Environmental Department
[4] Centre for Computational Simulation-UPM,School of Aerospace Engineering
[5] Scientific and Technological Park (Campus Montegancedo),School of Aeronautics and Astronautics
[6] Tsinghua University,undefined
[7] Zhejiang University,undefined
来源
关键词
turbulent boundary layer flow control; drag reduction; skin-friction drag reduction;
D O I
暂无
中图分类号
学科分类号
摘要
Turbulent boundary layer control (TBLC) for skin-friction drag reduction is a relatively new technology made possible through the advances in computational-simulation capabilities, which have improved the understanding of the flow structures of turbulence. Advances in micro-electronic technology have enabled the fabrication of active device systems able to manipulating these structures. The combination of simulation, understanding and micro-actuation technologies offers new opportunities to significantly decrease drag, and by doing so, to increase fuel efficiency of future aircraft. The literature review that follows shows that the application of active control turbulent skin-friction drag reduction is considered of prime importance by industry, even though it is still at a low technology readiness level (TRL). This review presents the state of the art of different technologies oriented to the active and passive control for turbulent skin-friction drag reduction and contributes to the improvement of these technologies.
引用
收藏
页码:1281 / 1290
页数:9
相关论文
共 50 条
  • [21] Microbubble effect on friction drag reduction in a turbulent boundary layer
    Feng, Yan-Yan
    Hu, Hong
    Peng, Guo-Yi
    Zhou, Yu
    OCEAN ENGINEERING, 2020, 211
  • [22] Opposition flow control for reducing skin-friction drag of a turbulent boundary layer
    Dacome, Giulio
    Mörsch, Robin
    Kotsonis, Marios
    Baars, Woutijn J.
    Physical Review Fluids, 9 (06):
  • [23] Opposition flow control for reducing skin-friction drag of a turbulent boundary layer
    Dacome, Giulio
    Moersch, Robin
    Kotsonis, Marios
    Baars, Woutijn J.
    PHYSICAL REVIEW FLUIDS, 2024, 9 (06):
  • [24] Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow
    Petrie, HL
    Deutsch, S
    Brungart, TA
    Fontaine, AA
    EXPERIMENTS IN FLUIDS, 2003, 35 (01) : 8 - 23
  • [25] Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow
    Dimitropoulos, CD
    Dubief, Y
    Shaqfeh, ESG
    Moin, P
    Lele, SK
    PHYSICS OF FLUIDS, 2005, 17 (01) : 011705 - 011705
  • [26] Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow
    H. L. Petrie
    S. Deutsch
    T. A. Brungart
    A. A. Fontaine
    Experiments in Fluids, 2003, 35 : 8 - 23
  • [27] Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow
    H. L. Petrie
    S. Deutsch
    T. A. Brungart
    A. A. Fontaine
    Experiments in Fluids, 2004, 36 : 663 - 663
  • [28] Characterizing a Boundary Layer Flow for Bubble Drag Reduction
    Harleman, Marc
    Delfos, Rene
    Westerweel, Jerry
    van Terwisga, Thomas J. C.
    PROGRESS IN WALL TURBULENCE: UNDERSTANDING AND MODELING, 2011, 14 : 413 - +
  • [29] Suboptimal control for drag reduction in turbulent pipe flow
    Xu, CX
    Choi, JI
    Sung, HJ
    FLUID DYNAMICS RESEARCH, 2002, 30 (04) : 217 - 231
  • [30] Active control for drag reduction in turbulent pipe flow
    Fukagata, K
    Kasagi, N
    ENGINEERING TURBULENCE MODELLING AND EXPERIMENTS 5, 2002, : 607 - 616