FIRE: an SPSS program for variable selection in multiple linear regression analysis via the relative importance of predictors

被引:0
|
作者
Urbano Lorenzo-Seva
Pere J. Ferrando
机构
[1] Universitat Rovira i Virgili,Departament de Psicologia, Centre de Reçerca en Avalució i Mesura de la Conducta
来源
Behavior Research Methods | 2011年 / 43卷
关键词
Multiple linear regression; Variable selection; Relative importance; DUPLEX; SPSS;
D O I
暂无
中图分类号
学科分类号
摘要
We provide an SPSS program that implements currently recommended techniques and recent developments for selecting variables in multiple linear regression analysis via the relative importance of predictors. The approach consists of: (1) optimally splitting the data for cross-validation, (2) selecting the final set of predictors to be retained in the equation regression, and (3) assessing the behavior of the chosen model using standard indices and procedures. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from brm.psychonomic-journals.org/content/supplemental.
引用
收藏
页码:1 / 7
页数:6
相关论文
共 50 条
  • [11] VARIABLE SELECTION FOR MULTIPLE FUNCTION-ON-FUNCTION LINEAR REGRESSION
    Cai, Xiong
    Xue, Liugen
    Cao, Jiguo
    [J]. STATISTICA SINICA, 2022, 32 (03) : 1435 - 1465
  • [12] Goodness of fit and variable selection in the fuzzy multiple linear regression
    D'Urso, Pierpaolo
    Santoro, Adriana
    [J]. FUZZY SETS AND SYSTEMS, 2006, 157 (19) : 2627 - 2647
  • [13] Subset selection for multiple linear regression via optimization
    Park, Young Woong
    Klabjan, Diego
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2020, 77 (03) : 543 - 574
  • [14] Subset selection for multiple linear regression via optimization
    Young Woong Park
    Diego Klabjan
    [J]. Journal of Global Optimization, 2020, 77 : 543 - 574
  • [15] Heteroscedasticity identification and variable selection via multiple quantile regression
    Wang, Mingqiu
    Kang, Xiaoning
    Liang, Jiajuan
    Wang, Kun
    Wu, Yuanshan
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (02) : 297 - 314
  • [16] Point estimates and confidence intervals for variable importance in multiple linear regression
    Thomas, D. Roland
    Zhu, PengCheng
    Decady, Yves J.
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2007, 32 (01) : 61 - 91
  • [17] Using a Truncated Cp Statistic for Variable Selection in Multiple Linear Regression
    Uys, D. W.
    Steel, S. J.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (02) : 420 - 432
  • [18] Sparse linear regression in unions of bases via Bayesian variable selection
    Fevotte, Cedric
    Godsill, Simon J.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (07) : 441 - 444
  • [19] Variable selection via adaptive false negative control in linear regression
    Jeng, X. Jessie
    Chen, Xiongzhi
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 5306 - 5333
  • [20] The Loss Rank Criterion for Variable Selection in Linear Regression Analysis
    Minh-Ngoc Tran
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2011, 38 (03) : 466 - 479