Complementary relevance feedback-based content-based image retrieval

被引:0
|
作者
Zhongmiao Xiao
Xiaojun Qi
机构
[1] Utah State University,Department of Computer Science
来源
关键词
Content-based image retrieval; Relevance feedback model; Semantic features; Long-term learning;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a complementary relevance feedback-based content-based image retrieval (CBIR) system. This system exploits the synergism between short-term and long-term learning techniques to improve the retrieval performance. Specifically, we construct an adaptive semantic repository in long-term learning to store retrieval patterns of historical query sessions. We then extract high-level semantic features from the semantic repository and seamlessly integrate low-level visual features and high-level semantic features in short-term learning to effectively represent the query in a single retrieval session. The high-level semantic features are dynamically updated based on users’ query concept and therefore represent the image’s semantic concept more accurately. Our extensive experimental results demonstrate that the proposed system outperforms its seven state-of-the-art peer systems in terms of retrieval precision and storage space on a large scale imagery database.
引用
收藏
页码:2157 / 2177
页数:20
相关论文
共 50 条
  • [1] Complementary relevance feedback-based content-based image retrieval
    Xiao, Zhongmiao
    Qi, Xiaojun
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 73 (03) : 2157 - 2177
  • [2] Content-based image retrieval by relevance feedback
    Zhong, J
    King, I
    Li, XQ
    [J]. ADVANCES IN VISUAL INFORMATION SYSTEMS, PROCEEDINGS, 2000, 1929 : 521 - 529
  • [3] A relevance feedback mechanism for content-based image retrieval
    Ciocca, G
    Schettini, R
    [J]. INFORMATION PROCESSING & MANAGEMENT, 1999, 35 (05) : 605 - 632
  • [4] Bayesian relevance feedback for content-based image retrieval
    Giacinto, G
    Roli, F
    [J]. PATTERN RECOGNITION, 2004, 37 (07) : 1499 - 1508
  • [5] Adaptive content-based image retrieval with relevance feedback
    Cabarkapa, S
    Kojic, N
    Radosavljevic, V
    Zajic, G
    Reljin, B
    [J]. EUROCON 2005: THE INTERNATIONAL CONFERENCE ON COMPUTER AS A TOOL, VOL 1 AND 2 , PROCEEDINGS, 2005, : 147 - 150
  • [6] Content-Based Image Retrieval base on Relevance Feedback
    Wen, Haixin
    Zhan, Yinwei
    [J]. GREEN ENERGY AND SUSTAINABLE DEVELOPMENT I, 2017, 1864
  • [7] Relevance feedback in content-based image and video retrieval
    Zhou, XS
    Wu, Y
    Cohen, I
    Huang, TS
    [J]. DIGITAL MEDIA: PROCESSING MULTIMEDIA INTERACTIVE SERVICES, 2003, : 1 - 12
  • [8] Content-based image retrieval with relevance feedback in Mars
    Rui, Y
    Huang, TS
    Mehrotra, S
    [J]. INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL II, 1997, : 815 - 818
  • [9] Fuzzy relevance feedback in content-based image retrieval
    Yap, KH
    Wu, K
    [J]. ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, 2003, : 1595 - 1599
  • [10] Bayesian relevance feedback for content-based image retrieval
    Vasconcelos, N
    Lippman, A
    [J]. IEEE WORKSHOP ON CONTENT-BASED ACCESS OF IMAGE AND VIDEO LIBRARIES, PROCEEDINGS, 2000, : 63 - 67