Bayesian relevance feedback for content-based image retrieval

被引:0
|
作者
Vasconcelos, N [1 ]
Lippman, A [1 ]
机构
[1] MIT, Media Lab, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
dWe present a Bayesian learning algorithm that relies on belief propagation to integrate feedback provided by the user over a retrieval session. Bayesian retrieval leads to a natural criteria for evaluating local image similarity without requiring any image segmentation. This allows the practical implementation of retrieval systems where users can provide image legions, or objects, as queries. Region-based queries an significantly less ambiguous than queries based on entire images leading to significant improvements in retrieval precision. When combined with local similarity, Bayesian belief propagation is a powerful paradigm for user interaction. Experimental results show that significant improvements in the frequency of convergence to the relevant images can be achieved by the inclusion of learning in the retrieval process.
引用
收藏
页码:63 / 67
页数:5
相关论文
共 50 条
  • [1] Bayesian relevance feedback for content-based image retrieval
    Giacinto, G
    Roli, F
    [J]. PATTERN RECOGNITION, 2004, 37 (07) : 1499 - 1508
  • [2] Relevance feedback using a Bayesian classifier in content-based image retrieval
    Su, Z
    Zhang, HJ
    Ma, SP
    [J]. STORAGE AND RETRIEVAL FOR MEDIA DATABASES 2001, 2001, 4315 : 97 - 106
  • [3] Content-based image retrieval by relevance feedback
    Zhong, J
    King, I
    Li, XQ
    [J]. ADVANCES IN VISUAL INFORMATION SYSTEMS, PROCEEDINGS, 2000, 1929 : 521 - 529
  • [4] A novel Bayesian framework for relevance feedback in image content-based retrieval systems
    de Ves, E.
    Domingo, J.
    Ayala, G.
    Zuccarello, P.
    [J]. PATTERN RECOGNITION, 2006, 39 (09) : 1622 - 1632
  • [5] Adaptive content-based image retrieval with relevance feedback
    Cabarkapa, S
    Kojic, N
    Radosavljevic, V
    Zajic, G
    Reljin, B
    [J]. EUROCON 2005: THE INTERNATIONAL CONFERENCE ON COMPUTER AS A TOOL, VOL 1 AND 2 , PROCEEDINGS, 2005, : 147 - 150
  • [6] Content-Based Image Retrieval base on Relevance Feedback
    Wen, Haixin
    Zhan, Yinwei
    [J]. GREEN ENERGY AND SUSTAINABLE DEVELOPMENT I, 2017, 1864
  • [7] A relevance feedback mechanism for content-based image retrieval
    Ciocca, G
    Schettini, R
    [J]. INFORMATION PROCESSING & MANAGEMENT, 1999, 35 (05) : 605 - 632
  • [8] Fuzzy relevance feedback in content-based image retrieval
    Yap, KH
    Wu, K
    [J]. ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, 2003, : 1595 - 1599
  • [9] Content-based image retrieval with relevance feedback in Mars
    Rui, Y
    Huang, TS
    Mehrotra, S
    [J]. INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL II, 1997, : 815 - 818
  • [10] Relevance feedback in content-based image and video retrieval
    Zhou, XS
    Wu, Y
    Cohen, I
    Huang, TS
    [J]. DIGITAL MEDIA: PROCESSING MULTIMEDIA INTERACTIVE SERVICES, 2003, : 1 - 12