On the singular points of the orbifolds arising from integral, ternary quadratic forms

被引:0
|
作者
José María Montesinos-Amilibia
机构
[1] Universidad Complutense,Facultad de Matematicas
关键词
Integral quadratic form; Knot; Link; Hyperbolic manifold; Volume; Automorph; Commensurability class; Integral equivalence; Rational equivalence; Projective equivalence; Bianchi equivalence; Conway’s excesses; -adic symbols.; 11E04; 11E20; 57M25; 57M50; 57M60;
D O I
暂无
中图分类号
学科分类号
摘要
Mennicke (Proc R Soc Edinb Sect A 67:309–352, 1963; Proc R Soc Edinb Sect A 88:151–157, 1981) investigated the number of conic points with isotropies of orders 3,  4 and 6 that can appear in the orientable twofold orbifold covering of the orbifold Qf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{f}$$\end{document} associated with an integral ternary quadratic form. Mennicke made essential use of a theorem of Jones (The Arithmetic Theory of Quadratic Forms. The Carus Mathematical Monographs, vol. 10. MAA, Baltimore, 1950, Theorem 86). In this paper we revisit Mennicke’s results and we extend them to Qf,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{f},$$\end{document} that is, even when Qf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{f}$$\end{document} is non-orientable. Our method is new and independent of Jones’ Theorem. We also study the possible cusp points.
引用
收藏
页码:267 / 332
页数:65
相关论文
共 50 条