On gap functions for nonsmooth multiobjective optimization problems

被引:0
|
作者
Giuseppe Caristi
Nader Kanzi
Majid Soleimani-damaneh
机构
[1] University of Messina,Department of Economics
[2] Payame Noor University (PNU),Department of Mathematics
[3] University of Tehran,School of Mathematics, Statistics and Computer Science, College of Science
[4] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Optimization Letters | 2018年 / 12卷
关键词
Multiobjective optimization; Nonsmooth optimization; Gap function; Clarke’s generalized gradient;
D O I
暂无
中图分类号
学科分类号
摘要
A set-valued gap function, ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}, existing in the literature for smooth and nonsmooth multiobjective optimization problems is dealt with. It is known that 0∈ϕ(x∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in \phi (x^*)$$\end{document} is a sufficient condition for efficiency of a feasible solution x∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^*$$\end{document}, while the converse does not hold. In the current work, the converse of this assertion is proved for properly efficient solutions. Afterwards, to avoid the complexities of set-valued maps some new single-valued gap functions, for nonsmooth multiobjective optimization problems with locally Lipschitz data are introduced. Important properties of the new gap functions are established.
引用
收藏
页码:273 / 286
页数:13
相关论文
共 50 条