On gap functions for nonsmooth multiobjective optimization problems

被引:0
|
作者
Giuseppe Caristi
Nader Kanzi
Majid Soleimani-damaneh
机构
[1] University of Messina,Department of Economics
[2] Payame Noor University (PNU),Department of Mathematics
[3] University of Tehran,School of Mathematics, Statistics and Computer Science, College of Science
[4] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Optimization Letters | 2018年 / 12卷
关键词
Multiobjective optimization; Nonsmooth optimization; Gap function; Clarke’s generalized gradient;
D O I
暂无
中图分类号
学科分类号
摘要
A set-valued gap function, ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}, existing in the literature for smooth and nonsmooth multiobjective optimization problems is dealt with. It is known that 0∈ϕ(x∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in \phi (x^*)$$\end{document} is a sufficient condition for efficiency of a feasible solution x∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^*$$\end{document}, while the converse does not hold. In the current work, the converse of this assertion is proved for properly efficient solutions. Afterwards, to avoid the complexities of set-valued maps some new single-valued gap functions, for nonsmooth multiobjective optimization problems with locally Lipschitz data are introduced. Important properties of the new gap functions are established.
引用
收藏
页码:273 / 286
页数:13
相关论文
共 50 条
  • [1] On gap functions for nonsmooth multiobjective optimization problems
    Caristi, Giuseppe
    Kanzi, Nader
    Soleimani-damaneh, Majid
    OPTIMIZATION LETTERS, 2018, 12 (02) : 273 - 286
  • [2] Infine functions and nonsmooth multiobjective optimization problems
    Nobakhtian, S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (9-10) : 1385 - 1394
  • [3] A class of nonsmooth fractional multiobjective optimization problems
    Thai Doan Chuong
    Kim, Do Sang
    ANNALS OF OPERATIONS RESEARCH, 2016, 244 (02) : 367 - 383
  • [4] A class of nonsmooth fractional multiobjective optimization problems
    Thai Doan Chuong
    Do Sang Kim
    Annals of Operations Research, 2016, 244 : 367 - 383
  • [5] Optimality and duality for nonsmooth multiobjective optimization problems
    Bae, Kwan Deok
    Kim, Do Sang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [6] Optimality and duality for nonsmooth multiobjective optimization problems
    Kwan Deok Bae
    Do Sang Kim
    Journal of Inequalities and Applications, 2013
  • [7] GAP FUNCTIONS FOR NONSMOOTH EQUILIBRIUM PROBLEMS
    Castellani, Marco
    Pappalardo, Massimo
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (6A): : 1837 - 1846
  • [8] Nonsmooth multiobjective optimization involving generalized univex functions
    Kharbanda P.
    Agarwal D.
    Sinha D.
    OPSEARCH, 2014, 51 (1) : 130 - 147
  • [9] ON NONSMOOTH OPTIMALITY THEOREMS FOR ROBUST MULTIOBJECTIVE OPTIMIZATION PROBLEMS
    Lee, Gue Myung
    Lee, Jae Hyoung
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (10) : 2039 - 2052
  • [10] On approximate solutions for nonsmooth robust multiobjective optimization problems
    Fakhar, M.
    Mahyarinia, M. R.
    Zafarani, J.
    OPTIMIZATION, 2019, 68 (09) : 1653 - 1683