Lawler’s minmax cost problem under uncertainty

被引:0
|
作者
Nadia Brauner
Gerd Finke
Yakov Shafransky
机构
[1] Université Grenoble Alpes,United Institute of Informatics Problems
[2] G-SCOP,undefined
[3] CNRS,undefined
[4] G-SCOP,undefined
[5] NAS of Belarus,undefined
来源
Journal of Combinatorial Optimization | 2017年 / 34卷
关键词
Lawler’s minmax cost algorithm; Uncertainty; Maximum regret;
D O I
暂无
中图分类号
学科分类号
摘要
The well-known O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document} minmax cost algorithm of Lawler (Manag Sci 19(5):544–546, 1973) was developed to minimize the maximum cost of jobs processed by a single machine under precedence constraints. We first develop a fast updating algorithm to obtain optimal solutions for two neighboring instances. This method will be used throughout this article. Then we consider job cost functions that depend on the completion time and on one or more additional numerical parameters. The parameters are uncertain and take values from given intervals. Under the uncertainty, we apply the minmax regret criterion for choosing a solution. We generalize results by Brauner et al. (J Sched, 2015) for decomposable cost functions with deterministic processing times and a single uncertain parameter to general cost functions. We describe different conditions, under which minmax regret solutions can be obtained with the time complexity O(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^3)$$\end{document} or O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document}. Then the updating algorithm is applied to the lateness model by Kasperski (Oper Res Lett 33:431–436, 2005) where both the processing time and the due date of each job are uncertain. The original O(n4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^4)$$\end{document} running time is improved to the time complexity O(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^3)$$\end{document}. Finally, we extend the cost functions with a single uncertain parameter to those with a vector of additional uncertain parameters, improve one of the complexity results by Volgenant and Duin (Comput Oper Res 37:909–915, 2010) and solve some new problems.
引用
收藏
页码:31 / 46
页数:15
相关论文
共 50 条
  • [1] Lawler's minmax cost problem under uncertainty
    Brauner, Nadia
    Finke, Gerd
    Shafransky, Yakov
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (01) : 31 - 46
  • [2] Lawler’s minmax cost algorithm: optimality conditions and uncertainty
    Nadia Brauner
    Gerd Finke
    Yakov Shafransky
    Dzmitry Sledneu
    Journal of Scheduling, 2016, 19 : 401 - 408
  • [3] Lawler's minmax cost algorithm: optimality conditions and uncertainty
    Brauner, Nadia
    Finke, Gerd
    Shafransky, Yakov
    Sledneu, Dzmitry
    JOURNAL OF SCHEDULING, 2016, 19 (04) : 401 - 408
  • [4] Minmax regret location-allocation problem on a network under uncertainty
    Conde, Eduardo
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 179 (03) : 1025 - 1039
  • [5] Minmax regret median location on a network under uncertainty
    Averbakh, I
    Berman, O
    INFORMS JOURNAL ON COMPUTING, 2000, 12 (02) : 104 - 110
  • [6] Randomized Minmax Regret for Combinatorial Optimization Under Uncertainty
    Mastin, Andrew
    Jaillet, Patrick
    Chin, Sang
    ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 491 - 501
  • [7] Collaborative hub location problem under cost uncertainty
    Habibi, M. K. Khakim
    Allaoui, Hamid
    Goncalves, Gilles
    COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 124 : 393 - 410
  • [8] A fix-and-optimize heuristic for the minmax regret shortest path arborescence problem under interval uncertainty
    Carvalho, Iago A.
    Noronha, Thiago F.
    Duhamel, Christophe
    Vieira, Luiz F. M.
    dos Santos, Vinicius F.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2023, 30 (02) : 1120 - 1143
  • [9] On the complexity of constructing a minmax regret solution for the two-machine flow shop problem under the interval uncertainty
    Shafransky, Yakov
    Shinkarevich, Viktor
    JOURNAL OF SCHEDULING, 2020, 23 (06) : 745 - 749
  • [10] On the complexity of constructing a minmax regret solution for the two-machine flow shop problem under the interval uncertainty
    Yakov Shafransky
    Viktor Shinkarevich
    Journal of Scheduling, 2020, 23 : 745 - 749