Experimental study on characterization of lime-based mineral carbonation reaction and CO2 sequestration

被引:0
|
作者
Zeki Karaca
机构
[1] University of Maine,Department of Civil and Environmental Engineering
关键词
Mineral carbonation reaction; CO; sequestration; Flow meter; Lime; CO; efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
This paper reports for the first time the use and application of a novel technique in the characterization of mineral carbonation reaction and CO2 sequestration in soil stabilization using flow meters. Soils based on SiO2 with two different sizes were tested. Lime (Ca(OH)2) was used as the reactant. Instant CO2 flow rate (L/min), total CO2 volume (L), temperature (°C), and absolute pressure (kPa) were monitored and recorded for 1 h by flow meters connected to the mold inlet and outlet. It was determined that the mineral carbonation reaction started in the first seconds and ended before the 5th minute. The mineral carbonation is a short-term and potential reaction, and it is not a time-dependent reaction. It is separated from other carbonation reactions with these characteristics. The highest CO2 captured value was obtained in the soil mixed with 5% lime, where fines were not used. The second highest CO2 captured value was obtained in soil mixed with 1% lime, where fines were not used. CO2 captured with 1% lime is more than CO2 captured with 5% lime in the soil containing fines. Accordingly, 1–5% lime can be used in soil carbonation studies. According to the soil properties, the highest CO2 captured and the CO2 efficiency was achieved with the use of 6–7% water by weight.
引用
收藏
页码:117804 / 117816
页数:12
相关论文
共 50 条
  • [31] CO2 Sequestration through Mineral Carbonation of Iron Oxyhydroxides
    Lammers, Kristin
    Murphy, Riley
    Riendeau, Amber
    Smirnov, Alexander
    Schoonen, Martin A. A.
    Strongin, Daniel R.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (24) : 10422 - 10428
  • [32] CO2 sequestration technology through mineral carbonation: An extraction and carbonation of blast slag
    Lee, Seonhye
    Kim, Ji-Whan
    Chae, Soochun
    Bang, Jun-Hwan
    Lee, Seung-Woo
    JOURNAL OF CO2 UTILIZATION, 2016, 16 : 336 - 345
  • [33] Using electrolysis of NaCl to promote CO2 sequestration by mineral carbonation
    Li, Baoqing
    Li, Wenzhi
    Li, Wen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [34] Mineral carbonation of a pulp and paper industry waste for CO2 sequestration
    Spinola, Ana C.
    Pinheiro, Carolina T.
    Ferreira, Abel G. M.
    Gando-Ferreira, Licinio M.
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 148 : 968 - 979
  • [35] CO2 mineral sequestration:: Chemically enhanced aqueous carbonation of serpentine
    Park, AHA
    Jadhav, R
    Fan, LS
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2003, 81 (3-4): : 885 - 890
  • [36] CO2 sequestration by aqueous mineral carbonation of limestone in a supercritical reactor
    Han, Du-Re
    Namkung, Hueon
    Lee, Ha-Min
    Huh, Dae-Gee
    Kim, Hyung-Taek
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 21 : 792 - 796
  • [37] Mineral carbonation of flue gas desulfurization gypsum for CO2 sequestration
    Lee, Myung Gyu
    Jang, Young Nam
    Ryu, Kyung Won
    Kim, Wonbeak
    Bang, Jun-Hwan
    ENERGY, 2012, 47 (01) : 370 - 377
  • [38] Mineral carbonation using seawater for CO2 sequestration and utilization: A review
    Ho, Hsing-Jung
    Iizuka, Atsushi
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 307
  • [39] Energy consumption and net CO2 sequestration of aqueous mineral carbonation
    Huijgen, Wouter J. J.
    Ruijg, Gerrit Jan
    Comans, Rob N. J.
    Witkamp, Geert-Jan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (26) : 9184 - 9194
  • [40] Direct mineral carbonation of coal fly ash for CO2 sequestration
    Dananjayan, Rushendra Revathy Tamilselvi
    Kandasamy, Palanivelu
    Andimuthu, Ramachandran
    JOURNAL OF CLEANER PRODUCTION, 2016, 112 : 4173 - 4182