Characterization of lithium-based poly (ethylene oxide)/poly (vinylidene fluoride-co-hexafluoropropylene) solid blend polymer electrolytes for energy storage applications

被引:0
|
作者
S. Shenbagavalli
M. Muthuvinayagam
M. S. Revathy
机构
[1] Kalasalingam Academy of Research and Education,Multifunctional Materials Laboratory, International Research Centre
[2] Saveetha School of Engineering,Department of Physical Sciences
[3] Saveetha University (SIMATS),Department of Physics, School of Advanced Sciences
[4] Kalasalingam Academy of Research and Education,undefined
来源
Ionics | 2023年 / 29卷
关键词
PEO:P(VdF-HFP):LiBr; Impedance spectroscopy; Electrochemical stability; Energy density; Power density; Specific capacitance;
D O I
暂无
中图分类号
学科分类号
摘要
In this present study, poly(ethylene oxide) (PEO):poly(vinylidene fluoride-co-hexafluoropropylene)P(VdF-HFP):lithium bromide (LiBr)-based solid blend polymer electrolytes (SPEs) are prepared by using solution casting technique with dimethyl formamide (DMF) as solvent. According to XRD analysis, the incorporation of LiBr improves the amorphous nature of the prepared electrolytes. FTIR analysis confirms the complexation between polymers and salt. Scanning electron microscopy (SEM) was used to examine the surface morphology and blending of the electrolytes. Impedance spectroscopy studies showed higher ionic conductivity of 3.75 × 10−4 S cm−1 at room temperature for the sample containing 4 wt% LiBr. The electrolytes were observed to follow Arrhenius behavior with R2 ~ 1, in which all samples were thermally activated as the temperature rises. The complex dielectric permittivity (ε∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varepsilon *)$$\end{document}, loss tangent (tanδ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(tan \delta )$$\end{document}, conductivity (σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma )$$\end{document}, and also complex electric modulus (M∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M*)$$\end{document} were used to understand the presence of electrode polarization. Wagner’s polarization technique was used to determine the transference number of these polymer electrolytes and it was found that the ionic conductivity was mostly due to ions. Transport characteristics like mobility (μ) and mobile ion diffusion coefficient (D) were also derived. The breakdown voltage of the polymer electrolytes was evaluated using linear sweep voltammetry (LSV). Using cyclic voltammetry (CV) analysis as well as Galvanostatic charge–discharge (GCD) measurement, maximum specific capacitance (Csp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({C}_{sp})$$\end{document} of 11.27 F/g was determined for the electrolytes. The energy (E) and power (P) density have been found to be 1.34 Wh/kg and 250 W/kg respectively.
引用
收藏
页码:211 / 231
页数:20
相关论文
共 50 条
  • [21] Polymer electrolyte membranes by in situ polymerization of poly(ethylene carbonate-co-ethylene oxide) macromonomers in blends with poly(vinylidene fluoride-co-hexafluoropropylene)
    Elmer, Anette Munch
    Jannasch, Patric
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2007, 45 (01) : 79 - 90
  • [22] Influence of ionic liquid characteristics on the performance of ternary solid polymer electrolytes with poly(vinylidene fluoride-co-hexafluoropropylene) and zeolite
    Barbosa, Joao Carlos
    Correia, Daniela Maria
    Nunes, Paulo
    Fernandes, Mariana
    Fidalgo-Marijuan, Arkaitz
    Goncalves, Renato
    Ferdov, Stanislav
    Bermudez, Veronica de Zea
    Lanceros-Mendez, Senentxu
    Costa, Carlos Miguel
    JOURNAL OF POWER SOURCES, 2023, 572
  • [23] Structural and ion transport properties of lithium triflate/poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolytes: Effect of lithium salt concentration
    Kumar, Asheesh
    Sharma, Raghunandan
    Suresh, M.
    Das, Malay K.
    Kar, Kamal K.
    JOURNAL OF ELASTOMERS AND PLASTICS, 2017, 49 (06): : 513 - 526
  • [24] Novel Proton-Conducting Polymer Electrolytes Based on Poly(Vinylidene fluoride-co-hexafluoropropylene)-Ammonium Thiocyanate
    Selvakumar, K.
    Kalaiselvimary, J.
    Rajendran, S.
    Prabhu, M. Ramesh
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2016, 55 (18) : 1940 - 1948
  • [25] Poly(vinylidene fluoride-co-hexafluoropropylene)-Based Solid Polymer Electrolyte Incorporated with UiO-66 for Lithium Metal Batteries
    Liu, Yulong
    Xu, Huanyan
    Liu, Wannian
    Li, Guanghui
    Liu, Xin
    Chen, Minghua
    Chen, Zhen
    ENERGY & FUELS, 2023, 37 (23) : 18154 - 18162
  • [26] Gel Polymer Electrolytes Based on Poly(vinylidene fluoride-co-hexafluoropropylene) and Salt-Concentrated Electrolytes for High-Voltage Lithium Metal Batteries
    Maeyoshi, Yuta
    Yoshii, Kazuki
    Sano, Hikaru
    Sakaebe, Hikari
    Tamate, Ryota
    Kaneko, Tomoaki
    Sodeyama, Keitaro
    ACS APPLIED POLYMER MATERIALS, 2025, 7 (03): : 1629 - 1638
  • [27] Conductivity and transference number of poly(ethylene oxide) poly(vinylidene fluoride) blend plasticized polymer electrolytes
    Kim, JU
    Sung, CH
    Moon, SI
    Gu, HB
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON PROPERTIES AND APPLICATIONS OF DIELECTRIC MATERIALS, VOLS 1 AND 2, 1997, : 646 - 649
  • [28] Investigation on Electrochemical Performance of New Flexible Nanocomposite Poly(Vinylidene Fluoride-co-Hexafluoropropylene) Polymer Electrolytes
    Vijayakumar, G.
    Maruthadurai, A.
    Paramasivam, R.
    Tamilavan, V.
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2020, 2020
  • [29] Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries
    Zhang, Yongguang
    Zhao, Yan
    Bakenov, Zhumabay
    Gosselink, Denise
    Chen, P.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (04) : 1111 - 1116
  • [30] Properties of clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene)
    Atanassov, Atanas
    Kostov, George
    Kiryakova, Dimitrina
    Borisova-Koleva, Ljudmila
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2014, 27 (01) : 126 - 141