A single layer spin-orbit torque nano-oscillator

被引:0
|
作者
Mohammad Haidar
Ahmad A. Awad
Mykola Dvornik
Roman Khymyn
Afshin Houshang
Johan Åkerman
机构
[1] University of Gothenburg,Physics Department
[2] Chalmers University of Technology,Physics Department
[3] School of Engineering Sciences,Material Physics and Nano Physics
[4] KTH Royal Institute of Technology,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Spin torque and spin Hall effect nano-oscillators generate high intensity spin wave auto-oscillations on the nanoscale enabling novel microwave applications in spintronics, magnonics, and neuromorphic computing. For their operation, these devices require externally generated spin currents either from an additional ferromagnetic layer or a material with a high spin Hall angle. Here we demonstrate highly coherent field and current tunable microwave signals from nano-constrictions in single 15–20 nm thick permalloy layers with oxide interfaces. Using a combination of spin torque ferromagnetic resonance measurements, scanning micro-Brillouin light scattering microscopy, and micromagnetic simulations, we identify the auto-oscillations as emanating from a localized edge mode of the nano-constriction driven by spin-orbit torques. Our results pave the way for greatly simplified designs of auto-oscillating nano-magnetic systems only requiring single ferromagnetic layers with oxide interfaces.
引用
收藏
相关论文
共 50 条
  • [21] Images of a Spin-Torque-Driven Magnetic Nano-Oscillator
    Yu, X. W.
    Pribiag, V. S.
    Acremann, Y.
    Tulapurkar, A. A.
    Tyliszczak, T.
    Chou, K. W.
    Braeuer, B.
    Li, Z. -P.
    Lee, O. J.
    Gowtham, P. G.
    Ralph, D. C.
    Buhrman, R. A.
    Stoehr, J.
    PHYSICAL REVIEW LETTERS, 2011, 106 (16)
  • [22] Weighted spin torque nano-oscillator system for neuromorphic computing
    T. Böhnert
    Y. Rezaeiyan
    M. S. Claro
    L. Benetti
    A. S. Jenkins
    H. Farkhani
    F. Moradi
    R. Ferreira
    Communications Engineering, 2 (1):
  • [23] Spin-Orbit Torque in a Single Ferromagnetic Layer Induced by Surface Spin Rotation
    Luo, Ziyan
    Zhang, Qi
    Xu, Yanjun
    Yang, Yumeng
    Zhang, Xinhai
    Wu, Yihong
    PHYSICAL REVIEW APPLIED, 2019, 11 (06)
  • [24] Amplitude-phase coupling in a spin-torque nano-oscillator
    Kudo, Kiwamu
    Nagasawa, Tazumi
    Sato, Rie
    Mizushima, Koichi
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
  • [25] Spin caloritronic nano-oscillator
    Safranski, C.
    Barsukov, I.
    Lee, H. K.
    Schneider, T.
    Jara, A. A.
    Smith, A.
    Chang, H.
    Lenz, K.
    Lindner, J.
    Tserkovnyak, Y.
    Wu, M.
    Krivorotov, I. N.
    NATURE COMMUNICATIONS, 2017, 8
  • [26] Spin torque and critical currents for magnetic vortex nano-oscillator in nanopillars
    Guslienko, K. Y.
    Aranda, G. R.
    Gonzalez, J.
    INTERNATIONAL CONFERENCE ON TRENDS IN SPINTRONICS AND NANOMAGNETISM (TSN 2010), 2011, 292
  • [27] Wireless Spintronics Modulation With a Spin Torque Nano-Oscillator (STNO) Array
    Oh, Inn-Yeal
    Park, Seung-Young
    Kang, Doo-Hyung
    Park, Chul Soon
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (07) : 502 - 504
  • [28] Spin caloritronic nano-oscillator
    C. Safranski
    I. Barsukov
    H. K. Lee
    T. Schneider
    A. A. Jara
    A. Smith
    H. Chang
    K. Lenz
    J. Lindner
    Y. Tserkovnyak
    M. Wu
    I. N. Krivorotov
    Nature Communications, 8
  • [29] Stability Analysis of Spin-Torque Nano-Oscillator in the Rotating Frame
    Chen, HaoHsuan
    Zeng, Lang
    Lee, ChingMing
    Zhao, Weisheng
    SPIN, 2019, 9 (03)
  • [30] Spin-torque nano-oscillator based on a synthetic antiferromagnet free layer and perpendicular to plane polarizer
    Firastrau, I.
    Buda-Prejbeanu, L. D.
    Dieny, B.
    Ebels, U.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (11)