On support points and continuous extensions

被引:0
|
作者
Carlo Alberto De Bernardi
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica
来源
Archiv der Mathematik | 2009年 / 93卷
关键词
Primary 46A55; Secondary 46B99; 54C20; Convex set; Support point; Support functional; Bishop-Phelps theorem; Selection;
D O I
暂无
中图分类号
学科分类号
摘要
A selection theorem concerning support points of convex sets in a Banach space is proved. As a corollary we obtain the following result. Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{BCC}(X)}$$\end{document} the metric space of all nonempty bounded closed convex sets in a Banach space X. Then there exists a continuous mapping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S : \mathcal{BCC}(X) \rightarrow X}$$\end{document} such that S(K) is a support point of K for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K \in \mathcal{BCC}(X)}$$\end{document}. Moreover, it is possible to prescribe the values of S on a closed discrete subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{BCC}(X)}$$\end{document}.
引用
收藏
页码:369 / 378
页数:9
相关论文
共 50 条
  • [21] Extensions of continuous and Lipschitz functions
    Matousková, E
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2000, 43 (02): : 208 - 217
  • [22] Extensions of continuous increasing functions
    Yamazaki, Kaori
    TOPOLOGY AND ITS APPLICATIONS, 2023, 335
  • [23] UNIFORMLY CONTINUOUS SELECTORS AND EXTENSIONS
    DREHER, FF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A185 - A185
  • [24] FUNCTIONS WITH CONTINUOUS WALLMAN EXTENSIONS
    HAJEK, DW
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1974, 24 (01) : 40 - 43
  • [25] Extensions by spaces of continuous functions
    Castillo, Jesus M. F.
    Moreno, Yolanda
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) : 2417 - 2423
  • [26] NEIGHBORHOOD EXTENSIONS OF CONTINUOUS MAPS
    LIEBNITZ, PW
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1966, 222 (1-2): : 58 - &
  • [27] EXTENSIONS OF CONTINUOUS-FUNCTIONS
    FIRBY, PA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1972, 5 (JUN): : 15 - &
  • [28] The Extensions of ν-Support Vector Classification
    Zhong, Ping
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2008, : 202 - 205
  • [29] Heegner Points over Towers of Kummer Extensions
    Darmon, Henri
    Tian, Ye
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2010, 62 (05): : 1060 - 1081
  • [30] Set of Points of Continuity and Maximally Discontinuous Extensions
    Soham Bakshi
    Resonance, 2022, 27 : 131 - 142