On support points and continuous extensions

被引:0
|
作者
Carlo Alberto De Bernardi
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica
来源
Archiv der Mathematik | 2009年 / 93卷
关键词
Primary 46A55; Secondary 46B99; 54C20; Convex set; Support point; Support functional; Bishop-Phelps theorem; Selection;
D O I
暂无
中图分类号
学科分类号
摘要
A selection theorem concerning support points of convex sets in a Banach space is proved. As a corollary we obtain the following result. Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{BCC}(X)}$$\end{document} the metric space of all nonempty bounded closed convex sets in a Banach space X. Then there exists a continuous mapping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S : \mathcal{BCC}(X) \rightarrow X}$$\end{document} such that S(K) is a support point of K for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K \in \mathcal{BCC}(X)}$$\end{document}. Moreover, it is possible to prescribe the values of S on a closed discrete subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{BCC}(X)}$$\end{document}.
引用
收藏
页码:369 / 378
页数:9
相关论文
共 50 条