Primary 46A55;
Secondary 46B99;
54C20;
Convex set;
Support point;
Support functional;
Bishop-Phelps theorem;
Selection;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A selection theorem concerning support points of convex sets in a Banach space is proved. As a corollary we obtain the following result. Denote by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{BCC}(X)}$$\end{document} the metric space of all nonempty bounded closed convex sets in a Banach space X. Then there exists a continuous mapping \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${S : \mathcal{BCC}(X) \rightarrow X}$$\end{document} such that S(K) is a support point of K for each \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${K \in \mathcal{BCC}(X)}$$\end{document}. Moreover, it is possible to prescribe the values of S on a closed discrete subset of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{BCC}(X)}$$\end{document}.
机构:
Univ Fed Fluminense, IME, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, BrazilUniv Fed Fluminense, IME, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, Brazil
Abdon, Miriam
Borges, Herivelto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Ciencias Matemat & Computaao, Av Trabalhador Sao Carlense, BR-13560970 Sao Carlos, SP, BrazilUniv Fed Fluminense, IME, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, Brazil
Borges, Herivelto
Quoos, Luciane
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, BrazilUniv Fed Fluminense, IME, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, Brazil