Recursion relations for conformal blocks

被引:0
|
作者
João Penedones
Emilio Trevisani
Masahito Yamazaki
机构
[1] Centro de Fisica do Porto,Theoretical Physics Department
[2] Departamento de Fisica e Astronomia,Kavli IPMU (WPI)
[3] Faculdade de Ciências da Universidade do Porto,undefined
[4] CERN,undefined
[5] ICTP South American Institute for Fundamental Research Instituto de Fisica Teorica,undefined
[6] UNESP - Universidade Estadual Paulista,undefined
[7] University of Tokyo,undefined
[8] Institute for Advanced Study,undefined
[9] School of Natural Sciences,undefined
关键词
Conformal and W Symmetry; Field Theories in Higher Dimensions;
D O I
暂无
中图分类号
学科分类号
摘要
In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension Δ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in [1] for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.
引用
收藏
相关论文
共 50 条
  • [31] The algebra of conformal blocks
    Manon, Christopher
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (11) : 2685 - 2715
  • [32] Eikonalization of conformal blocks
    A. Liam Fitzpatrick
    Jared Kaplan
    Matthew T. Walters
    Junpu Wang
    [J]. Journal of High Energy Physics, 2015
  • [33] Thermal conformal blocks
    Gobeil, Yan
    Maloney, Alexander
    Ng, Gim Seng
    Wu, Jie-qiang
    [J]. SCIPOST PHYSICS, 2019, 7 (02):
  • [34] Spinning conformal blocks
    Miguel S. Costa
    João Penedones
    David Poland
    Slava Rychkov
    [J]. Journal of High Energy Physics, 2011
  • [35] Classical conformal blocks
    Menotti, Pietro
    [J]. MODERN PHYSICS LETTERS A, 2016, 31 (27)
  • [36] CONFORMAL SYMMETRY IN TWO-DIMENSIONAL SPACE - RECURSION REPRESENTATION OF CONFORMAL BLOCK
    ZAMOLODCHIKOV, AB
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 73 (01) : 1088 - 1093
  • [37] On recursion relations in topological string theory
    Prudenziati, Andrea
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (02):
  • [38] Recursion relations from soft theorems
    Luo, Hui
    Wen, Congkao
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (03):
  • [39] Recursion Relations for Double Ramification Hierarchies
    Buryak, Alexandr
    Rossi, Paolo
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 342 (02) : 533 - 568
  • [40] Weighted Laplacians, cocycles and recursion relations
    Krasnov K.
    Scarinci C.
    [J]. Journal of High Energy Physics, 2013 (11)