Cancer GAMAdb: database of cancer genetic associations from meta-analyses and genome-wide association studies

被引:0
|
作者
Sheri D Schully
Wei Yu
Victoria McCallum
Camilla B Benedicto
Linda M Dong
Anja Wulf
Melinda Clyne
Muin J Khoury
机构
[1] National Cancer Institute,Division of Cancer Control and Population Sciences
[2] Office of Public Health Genomics,Division of Cancer Epidemiology and Genetics
[3] Centers for Disease Control and Prevention,undefined
[4] Office of Workforce Development,undefined
[5] National Cancer Institute,undefined
[6] National Cancer Institute,undefined
来源
关键词
cancer; meta-analyses; pooled analyses; GWAS;
D O I
暂无
中图分类号
学科分类号
摘要
In the field of cancer, genetic association studies are among the most active and well-funded research areas, and have produced hundreds of genetic associations, especially in the genome-wide association studies (GWAS) era. Knowledge synthesis of these discoveries is the first critical step in translating the rapidly emerging data from cancer genetic association research into potential applications for clinical practice. To facilitate the effort of translational research on cancer genetics, we have developed a continually updated database named Cancer Genome-wide Association and Meta Analyses database that contains key descriptive characteristics of each genetic association extracted from published GWAS and meta-analyses relevant to cancer risk. Here we describe the design and development of this tool with the aim of aiding the cancer research community to quickly obtain the current updated status in cancer genetic association studies.
引用
收藏
页码:928 / 930
页数:2
相关论文
共 50 条
  • [41] Meta-Analyses of Genome-Wide Association Studies for Postpartum Depression (vol 180, pg 884, 2023)
    Guintivano, Jerry
    AMERICAN JOURNAL OF PSYCHIATRY, 2023, 180 (12): : 895 - 895
  • [42] NOVEL LOCI FOR ANTIDEPRESSANT RESPONSE IDENTIFIED FROM GENOME-WIDE ASSOCIATION STUDIES AND MULTI-TRAIT META-ANALYSES
    Koch, Elise
    Krebs, Kristi
    Jurgenson, Tuuli
    Milani, Lili
    O'Connell, Kevin
    Andreassen, Ole
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2023, 75 : S53 - S53
  • [43] Meta-Analysis of Genome-Wide and Replication Association Studies on Prostate Cancer
    Liu, Hong
    Wang, Bo
    Han, Chunsheng
    PROSTATE, 2011, 71 (02): : 209 - 224
  • [44] Beyond genome-wide association studies: genetic heterogeneity and individual predisposition to cancer
    Galvan, Antonella
    Ioannidis, John P. A.
    Dragani, Tommaso A.
    TRENDS IN GENETICS, 2010, 26 (03) : 132 - 141
  • [45] Associations of CB1 cannabinoid receptor (CNR1) gene polymorphisms with risk for alcohol dependence Evidence from meta-analyses of genetic and genome-wide association studies
    Pabalan, Noel
    Chaweeborisuit, Phanthip
    Tharabenjasin, Phuntila
    Tasanarong, Adis
    Jarjanazi, Hamdi
    Eiamsitrakoon, Thanee
    Tapanadechopone, Pairath
    MEDICINE, 2021, 100 (43) : E27343
  • [46] Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies
    Mocellin, Simone
    Tropea, Saveria
    Benna, Clara
    Rossi, Carlo Riccardo
    BMC MEDICINE, 2018, 16
  • [47] Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies
    Simone Mocellin
    Saveria Tropea
    Clara Benna
    Carlo Riccardo Rossi
    BMC Medicine, 16
  • [48] Easygwa-S - A General Software For Stratified Genome-Wide Association Meta-Analyses
    Winkler, T. W.
    Kronenberg, F.
    Heid, I. M.
    GENETIC EPIDEMIOLOGY, 2012, 36 (02) : 165 - 165
  • [49] Cross-ancestry genome-wide association meta-analyses of hippocampal and subfield volumes
    Nana Liu
    Longjiang Zhang
    Tian Tian
    Jingliang Cheng
    Bing Zhang
    Shijun Qiu
    Zuojun Geng
    Guangbin Cui
    Quan Zhang
    Weihua Liao
    Yongqiang Yu
    Hui Zhang
    Bo Gao
    Xiaojun Xu
    Tong Han
    Zhenwei Yao
    Wen Qin
    Feng Liu
    Meng Liang
    Qiang Xu
    Jilian Fu
    Jiayuan Xu
    Wenzhen Zhu
    Peng Zhang
    Wei Li
    Dapeng Shi
    Caihong Wang
    Su Lui
    Zhihan Yan
    Feng Chen
    Jiance Li
    Jing Zhang
    Dawei Wang
    Wen Shen
    Yanwei Miao
    Junfang Xian
    Jia-Hong Gao
    Xiaochu Zhang
    Mulin Jun Li
    Kai Xu
    Xi-Nian Zuo
    Meiyun Wang
    Zhaoxiang Ye
    Chunshui Yu
    Nature Genetics, 2023, 55 : 1126 - 1137
  • [50] Meta-Analyses of Genome-Wide Association Data Hold New Promise for Addiction Genetics
    Agrawal, Arpana
    Edenberg, Howard J.
    Gelernter, Joel
    JOURNAL OF STUDIES ON ALCOHOL AND DRUGS, 2016, 77 (05) : 676 - 680