Seiberg–Witten theory as a Fermi gas

被引:0
|
作者
Giulio Bonelli
Alba Grassi
Alessandro Tanzini
机构
[1] International School of Advanced Studies (SISSA),International Center for Theoretical Physics
[2] INFN,undefined
[3] Sezione di Trieste,undefined
[4] ICTP,undefined
来源
关键词
Supersymmetric gauge theories; Fermi gas; Matrix models; Quantum and spectral theory; Topological string; 70S15; 81T13; 81T60; 82D05; 15B52; 81Q10; 81Q60; 81Q80; 55P50; 57R56; 51P05;
D O I
暂无
中图分类号
学科分类号
摘要
We explore a new connection between Seiberg–Witten theory and quantum statistical systems by relating the dual partition function of SU(2) Super Yang–Mills theory in a self-dual Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} background to the spectral determinant of an ideal Fermi gas. We show that the spectrum of this gas is encoded in the zeroes of the Painlevé III3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{III}_3$$\end{document}τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} function. In addition, we find that the Nekrasov partition function on this background can be expressed as an O(2) matrix model. Our construction arises as a four-dimensional limit of a recently proposed conjecture relating topological strings and spectral theory. In this limit, we provide a mathematical proof of the conjecture for the local P1×P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb P}^1 \times {\mathbb P}^1$$\end{document} geometry.
引用
收藏
页码:1 / 30
页数:29
相关论文
共 50 条
  • [1] Seiberg-Witten theory as a Fermi gas
    Bonelli, Giulio
    Grassi, Alba
    Tanzini, Alessandro
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (01) : 1 - 30
  • [2] Prepotential and the Seiberg-Witten theory
    Itoyama, H
    Morozov, A
    NUCLEAR PHYSICS B, 1997, 491 (03) : 529 - 573
  • [3] Seiberg Witten theory and monstrous moonshine
    Mizoguchi, Shun'ya
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2022, 2022 (12):
  • [4] An introduction to Seiberg-Witten theory
    Ocampo, H
    GEOMETRIC METHODS FOR QUANTUM FIELD THEORY, 2001, : 421 - 448
  • [5] Integrability in Seiberg-Witten theory
    Morozov, A
    INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 93 - 102
  • [6] Seiberg-Witten theory with SpinH structure
    Kim, Inkang
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (07)
  • [7] The WDVV Equations in Pure Seiberg–Witten Theory
    L. K. Hoevenaars
    Acta Applicandae Mathematica, 2005, 86 : 49 - 102
  • [8] Seiberg-Witten theory and matrix models
    Klemm, Albrecht
    Sulkowski, Piotr
    NUCLEAR PHYSICS B, 2009, 819 (03) : 400 - 430
  • [9] WDVV equations and Seiberg-Witten theory
    Mironov, A
    INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 103 - 123
  • [10] Seiberg-Witten theory and random partitions
    Nekrasov, NA
    Okounkov, A
    UNITY OF MATHEMATICS: IN HONOR OF THE NINETIETH BIRTHDAY OF I.M. GELFAND, 2006, 244 : 525 - +