Seiberg Witten theory and monstrous moonshine

被引:0
|
作者
Mizoguchi, Shun'ya [1 ,2 ]
机构
[1] KEK Tsukuba, Inst Particle & Nucl Studies, Theory Ctr, Tsukuba, Ibaraki 3050801, Japan
[2] SOKENDAI Grad Univ Adv Studies Tsukuba, Tsukuba, Ibaraki 3050801, Japan
来源
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS | 2022年 / 2022卷 / 12期
关键词
N=2; SYMMETRY; DYNAMICS; DUALITY;
D O I
10.1093/ptep/ptac140
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the relation between the instanton expansion of the Seiberg-Witten (SW) prepotential for D = 4, N = 2 SU(2) SUSY gauge theory for N-f = 0 and 1 and the monstrous moonshine. By utilizing a newly developed simple method to obtain the SW prepotential, A(2) it is shown that the coefficients of the expansion of q = e(2 pi i pi) in terms of A(2) = Lambda(2)/16a(2) (N-f = 0) or Lambda(2)/32a(2) (N-f = 1) arc all integer-coefficient polynomials of the moonshine coefficients of the modular j-function. A relationship between the Alday-Gaiotto-Tachikawa (AGT) c = 25 Liouville conformal field theory (CFT) and the c = 24 vertex operator algebra CFT of the moonshine module is also suggested.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] More on Seiberg-Witten theory and Monstrous moonshine: A new simple method of calculating the prepotential
    Mizoguchi, Shun'ya
    Oikawa, Takumi
    Tashiro, Hitomi
    Yata, Shotaro
    PHYSICS LETTERS B, 2023, 839
  • [2] Prepotential and the Seiberg-Witten theory
    Itoyama, H
    Morozov, A
    NUCLEAR PHYSICS B, 1997, 491 (03) : 529 - 573
  • [3] An introduction to Seiberg-Witten theory
    Ocampo, H
    GEOMETRIC METHODS FOR QUANTUM FIELD THEORY, 2001, : 421 - 448
  • [4] Integrability in Seiberg-Witten theory
    Morozov, A
    INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 93 - 102
  • [5] Seiberg–Witten theory as a Fermi gas
    Giulio Bonelli
    Alba Grassi
    Alessandro Tanzini
    Letters in Mathematical Physics, 2017, 107 : 1 - 30
  • [6] Monstrous moonshine and orbifolds
    Tuite, MP
    GROUPS, DIFFERENCE SETS, AND THE MONSTER, 1996, 4 : 443 - 461
  • [7] Seiberg-Witten theory with SpinH structure
    Kim, Inkang
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (07)
  • [8] Monstrous moonshine is true
    Gibbs, WW
    SCIENTIFIC AMERICAN, 1998, 279 (05) : 40 - 41
  • [9] The WDVV Equations in Pure Seiberg–Witten Theory
    L. K. Hoevenaars
    Acta Applicandae Mathematica, 2005, 86 : 49 - 102
  • [10] Seiberg-Witten theory and matrix models
    Klemm, Albrecht
    Sulkowski, Piotr
    NUCLEAR PHYSICS B, 2009, 819 (03) : 400 - 430