Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind over the Solar Poles

被引:0
|
作者
Ken’ichi Fujiki
Kiyoto Shibasaki
Seiji Yashiro
Munetoshi Tokumaru
Kazumasa Iwai
Satoshi Masuda
机构
[1] Nagoya University,Institute for Space
[2] Solar Physics Research Inc.,Earth Environmental Research
[3] The Catholic University of America,Department of Physics
[4] NASA Goddard Space Flight Center,Code 671
来源
Solar Physics | 2019年 / 294卷
关键词
Solar wind; Interplanetary scintillation; Radioheliograph; Coronal holes; Magnetic fields; Solar Cycle;
D O I
暂无
中图分类号
学科分类号
摘要
We compared the long-term variation (1992 – 2017) in solar polar brightening observed with the Nobeyama Radioheliograph, the polar solar-wind velocity with interplanetary scintillation observations at the Institute for Space-Earth Environmental Research, and the coronal-hole distribution computed by potential-field calculations of the solar corona using synoptic magnetogram data obtained at the National Solar Observatory/Kitt Peak. First, by comparing the solar-wind velocity [V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document}] and the brightness temperature [Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document}] in the polar region, we found good correlation coefficients (CCs) between V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document} and Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document} in the polar regions, CC = 0.91 (0.83) for the northern (southern) polar region, and we obtained the V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document}–Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{ \mathrm{b}}$\end{document} relationship as V=12.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V = 12.6$\end{document}(Tb−10,667)1/2+432\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(T_{\mathrm{b}}-10{,}667)^{1/2}+432$\end{document}. We also confirmed that the CC of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document}–Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document} is higher than those of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document}–B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B$\end{document} and V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document}–B/f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B/f$\end{document}, where B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B$\end{document} and f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f$\end{document} are the polar magnetic-field strength and magnetic-flux expansion rate, respectively. These results indicate that Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document} is a more direct parameter than B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B$\end{document} or B/f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B/f$\end{document} for expressing solar-wind velocity. Next, we analyzed the long-term variation of the polar brightening and its relation to the area of the polar coronal hole [A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A$\end{document}]. As a result, we found that the polar brightening matches the probability distribution of the predicted coronal hole and that the CC between Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document} and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A$\end{document} is remarkably high, CC = 0.97. This result indicates that the polar brightening is strongly coupled to the size of the polar coronal hole. Therefore, the reasonable correlation of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document} – Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document} is explained by V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document} – A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A$\end{document}. In addition, by considering the anti-correlation between A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A$\end{document} and f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f$\end{document} found in a previous study, we suggest that the V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document} – Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document} relationship is another expression of the Wang–Sheeley relationship (V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document} – 1/f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1/f$\end{document}) in the polar regions.
引用
收藏
相关论文
共 50 条
  • [11] Solar wind acceleration in coronal holes
    Cranmer, SR
    PROCEEDINGS OF THE SOHO 11 SYMPOSIUM ON FROM SOLAR MIN TO MAX: HALF A SOLAR CYCLE WITH SOHO, 2002, 508 : 361 - 366
  • [12] POLAR CORONAL HOLES AND SOLAR-CYCLES
    SIMON, PA
    SOLAR PHYSICS, 1979, 63 (02) : 399 - 410
  • [13] Polar coronal holes in the solar activity cycle
    Stepanian, N. N.
    Shtertser, N. I.
    ADVANCES IN SPACE RESEARCH, 2015, 55 (03) : 795 - 797
  • [14] Coronal holes and the solar polar field reversal
    Bilenko, IA
    ASTRONOMY & ASTROPHYSICS, 2002, 396 (02): : 657 - 666
  • [15] Self consistent MHD modeling of the solar wind from polar coronal holes
    Stewart, GA
    Bravo, S
    SOLAR WIND EIGHT - PROCEEDINGS OF THE EIGHTH INTERNATIONAL SOLAR WIND CONFERENCE, 1996, (382): : 145 - 148
  • [16] Study of the heating mechanism of solar wind ions in coronal holes
    Tu, CY
    Marsch, E
    SOLAR WIND NINE, 1999, 471 : 373 - 376
  • [17] CORONAL HOLES AS SOURCES OF SOLAR-WIND
    NOLTE, JT
    KRIEGER, AS
    TIMOTHY, AF
    GOLD, RE
    ROELOF, EC
    VAIANA, G
    LAZARUS, AJ
    SULLIVAN, JD
    MCINTOSH, PS
    SOLAR PHYSICS, 1976, 46 (02) : 303 - 322
  • [18] Influence of Polar Coronal Holes on Solar Wind Characteristics at the Activity Minimum between Solar Cycles 24 and 25
    A. V. Borisenko
    S. A. Bogachev
    Astronomy Letters, 2020, 46 : 751 - 761
  • [19] SOLAR WIND AND CORONAL BRIGHT POINTS INSIDE CORONAL HOLES
    Karachik, Nina V.
    Pevtsov, Alexei A.
    ASTROPHYSICAL JOURNAL, 2011, 735 (01):
  • [20] Three cycle quasiperiodicity in solar wind from polar coronal holes and the size of solar activity cycle 23
    Ahluwalia, HS
    SOLAR WIND NINE, 1999, 471 : 415 - 418