Topological features without a lattice in Rashba spin-orbit coupled atoms

被引:0
|
作者
A. Valdés-Curiel
D. Trypogeorgos
Q.-Y. Liang
R. P. Anderson
I. B. Spielman
机构
[1] Joint Quantum Institute,
[2] University of Maryland,undefined
[3] CNR Nanotec,undefined
[4] Institute of Nanotechnology,undefined
[5] La Trobe Institute of Molecular Science,undefined
[6] La Trobe University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Topological order can be found in a wide range of physical systems, from crystalline solids, photonic meta-materials and even atmospheric waves to optomechanic, acoustic and atomic systems. Topological systems are a robust foundation for creating quantized channels for transporting electrical current, light, and atmospheric disturbances. These topological effects are quantified in terms of integer-valued ‘invariants’, such as the Chern number, applicable to the quantum Hall effect, or the Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Z}}}_{2}$$\end{document} invariant suitable for topological insulators. Here, we report the engineering of Rashba spin-orbit coupling for a cold atomic gas giving non-trivial topology, without the underlying crystalline structure that conventionally yields integer Chern numbers. We validated our procedure by spectroscopically measuring both branches of the Rashba dispersion relation which touch at a single Dirac point. We then measured the quantum geometry underlying the dispersion relation using matter-wave interferometry to implement a form of quantum state tomography, giving a Berry’s phase with magnitude π. This implies that opening a gap at the Dirac point would give two dispersions (bands) each with half-integer Chern number, potentially implying new forms of topological transport.
引用
收藏
相关论文
共 50 条
  • [41] Determination of Rashba and Dresselhaus spin-orbit fields
    Maiti, Santanu K.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 110 (06)
  • [42] New perspectives for Rashba spin-orbit coupling
    Manchon A.
    Koo H.C.
    Nitta J.
    Frolov S.M.
    Duine R.A.
    [J]. Nature Materials, 2015, 14 (09) : 871 - 882
  • [43] Generic helical edge states due to Rashba spin-orbit coupling in a topological insulator
    Ortiz, Laura
    Molina, Rafael A.
    Platero, Gloria
    Lunde, Anders Mathias
    [J]. PHYSICAL REVIEW B, 2016, 93 (20)
  • [44] New perspectives for Rashba spin-orbit coupling
    Manchon, A.
    Koo, H. C.
    Nitta, J.
    Frolov, S. M.
    Duine, R. A.
    [J]. NATURE MATERIALS, 2015, 14 (09) : 871 - 882
  • [45] Spin-orbit torques in a Rashba honeycomb antiferromagnet
    Sokolewicz, Robert
    Ghosh, Sumit
    Yudin, Dmitry
    Manchon, Aurelien
    Titov, Mikhail
    [J]. PHYSICAL REVIEW B, 2019, 100 (21)
  • [46] Optical lattice modulation spectroscopy for spin-orbit coupled bosons
    De Sarkar, Sangita
    Sensarma, Rajdeep
    Sengupta, K.
    [J]. PHYSICAL REVIEW B, 2015, 92 (17)
  • [47] SU(3) spin-orbit coupled fermions in an optical lattice
    Zhou, Xiaofan
    Chen, Gang
    Jia, Suo-Tang
    [J]. CHINESE PHYSICS B, 2022, 31 (01)
  • [49] Topological and magnetic phases with strong spin-orbit coupling on the hyperhoneycomb lattice
    Lee, Eric Kin-Ho
    Bhattacharjee, Subhro
    Hwang, Kyusung
    Kim, Heung-Sik
    Jin, Hosub
    Kim, Yong Baek
    [J]. PHYSICAL REVIEW B, 2014, 89 (20):
  • [50] Quantum transport in ferromagnetic graphene super lattice in the presence of Rashba spin-orbit coupling
    Hasanirokh, Kobra
    Esmaelpour, Mohammad
    Mohammadpour, Hakimeh
    Phirouznia, Arash
    [J]. PHYSICS LETTERS A, 2014, 378 (26-27) : 1888 - 1892