Topological features without a lattice in Rashba spin-orbit coupled atoms

被引:0
|
作者
A. Valdés-Curiel
D. Trypogeorgos
Q.-Y. Liang
R. P. Anderson
I. B. Spielman
机构
[1] Joint Quantum Institute,
[2] University of Maryland,undefined
[3] CNR Nanotec,undefined
[4] Institute of Nanotechnology,undefined
[5] La Trobe Institute of Molecular Science,undefined
[6] La Trobe University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Topological order can be found in a wide range of physical systems, from crystalline solids, photonic meta-materials and even atmospheric waves to optomechanic, acoustic and atomic systems. Topological systems are a robust foundation for creating quantized channels for transporting electrical current, light, and atmospheric disturbances. These topological effects are quantified in terms of integer-valued ‘invariants’, such as the Chern number, applicable to the quantum Hall effect, or the Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Z}}}_{2}$$\end{document} invariant suitable for topological insulators. Here, we report the engineering of Rashba spin-orbit coupling for a cold atomic gas giving non-trivial topology, without the underlying crystalline structure that conventionally yields integer Chern numbers. We validated our procedure by spectroscopically measuring both branches of the Rashba dispersion relation which touch at a single Dirac point. We then measured the quantum geometry underlying the dispersion relation using matter-wave interferometry to implement a form of quantum state tomography, giving a Berry’s phase with magnitude π. This implies that opening a gap at the Dirac point would give two dispersions (bands) each with half-integer Chern number, potentially implying new forms of topological transport.
引用
收藏
相关论文
共 50 条
  • [1] Topological features without a lattice in Rashba spin-orbit coupled atoms
    Valdes-Curiel, A.
    Trypogeorgos, D.
    Liang, Q. -Y.
    Anderson, R. P.
    Spielman, I. B.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] Class of topological phase transitions of Rashba spin-orbit coupled fermions on a square lattice
    Yu Yi-Xiang
    Sun, Fadi
    Ye, Jinwu
    [J]. PHYSICAL REVIEW B, 2018, 98 (17)
  • [3] Topological Insulators on the Ruby Lattice with Rashba Spin-Orbit Coupling
    Hou Jing-Min
    Wang Guo-Xiang
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 60 (01) : 129 - 135
  • [4] Topological Insulators on the Ruby Lattice with Rashba Spin-Orbit Coupling
    侯净敏
    王国祥
    [J]. Communications in Theoretical Physics, 2013, 60 (07) : 129 - 135
  • [5] Topological edge states in Rashba-Dresselhaus spin-orbit-coupled atoms in a Zeeman lattice
    Li, C.
    Ye, F.
    Chen, X.
    Kartashov, Y., V
    Torner, L.
    Konotop, V. V.
    [J]. PHYSICAL REVIEW A, 2018, 98 (06)
  • [6] Spin-orbit coupled superconductivity: Rashba-Hubbard model on the square lattice
    Wolf, Sebastian
    Rachel, Stephan
    [J]. PHYSICAL REVIEW B, 2020, 102 (17)
  • [7] Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling
    Yang Yuan
    Chen Shuai
    Li Xiao-Bing
    [J]. ACTA PHYSICA SINICA, 2018, 67 (23)
  • [8] Topological phase transition on the ruby lattice with Rashba spin-orbit coupling and an exchange field
    Yang, Yuan
    Zhou, Wenting
    Shu, Changrong
    Li, Xiaobing
    [J]. PHYSICA B-CONDENSED MATTER, 2023, 666
  • [9] Engineering Topological Nodal Line Semimetals in Rashba Spin-Orbit Coupled Atomic Chains
    Gentile, Paola
    Benvenuto, Vittorio
    Ortix, Carmine
    Noce, Canio
    Cuoco, Mario
    [J]. CONDENSED MATTER, 2019, 4 (01): : 1 - 10
  • [10] Zitterbewegung with spin-orbit coupled ultracold atoms in a fluctuating optical lattice
    Argonov, V. Yu
    Makarov, D. V.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (17)