Design of microfluidic channels separated by an ultra-thin free-standing dielectric membrane

被引:0
|
作者
Michal Tencer
Pierre Berini
机构
[1] University of Ottawa,School of Information Technology and Engineering
[2] MST Consulting,undefined
[3] Spectalis Corp.,undefined
来源
关键词
Residual Stress; Pressure Drop; Point Force; Metal Stripe; Zehnder Interferometer;
D O I
暂无
中图分类号
学科分类号
摘要
A microfluidic (MF) surface plasmon polariton sensor featuring a gold Mach–Zehnder interferometer on an ultra-thin (20–35 nm) dielectric membrane is described. While the presence of the membrane is required to maintain a near mirror symmetry of the dielectric properties of the medium on either side of the interferometer, it is a source of unique challenges in the MF system design. The pressure required to drive the fluid flow in microchannels causes deflection whose value depends on the membrane’s residual stress in the low pressure range and on its modulus at the higher pressure range. Depending on the empirical membrane strength which would meet the required equipment reliability, narrow fluidic channels may require tight dimensional tolerances to maintain the pressure difference across the membrane below a critical value. With wider channels (≥100 μm) dimensional tolerances are relaxed even with relatively weak membranes.
引用
收藏
页码:17 / 26
页数:9
相关论文
共 50 条
  • [11] Ultra-thin free-standing single crystalline silicon membranes with strain control
    Shchepetov, A.
    Prunnila, M.
    Alzina, F.
    Schneider, L.
    Cuffe, J.
    Jiang, H.
    Kauppinen, E. I.
    Sotomayor Torres, C. M.
    Ahopelto, J.
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (19)
  • [12] In-Situ Measurements of Free-Standing, Ultra-Thin Film Cracking in Bending
    Hintsala, E.
    Kiener, D.
    Jackson, J.
    Gerberich, W. W.
    [J]. EXPERIMENTAL MECHANICS, 2015, 55 (09) : 1681 - 1690
  • [13] In-Situ Measurements of Free-Standing, Ultra-Thin Film Cracking in Bending
    E. Hintsala
    D. Kiener
    J. Jackson
    W. W. Gerberich
    [J]. Experimental Mechanics, 2015, 55 : 1681 - 1690
  • [14] Ultra-thin plasmonic color filters incorporating free-standing resonant membrane waveguides with high transmission efficiency
    Wang, Jiaxing
    Fan, Qingbin
    Zhang, Si
    Zhang, Zijie
    Zhang, Hui
    Liang, Yuzhang
    Cao, Xun
    Xu, Ting
    [J]. APPLIED PHYSICS LETTERS, 2017, 110 (03)
  • [15] A microfluidic platform with a free-standing perforated polymer membrane
    Choi, Junseo
    Roychowdhury, Anish
    Kim, Namwon
    Nikitopoulos, Dimitris E.
    Lee, Wonbong
    Han, Haksoo
    Park, Sunggook
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (08)
  • [16] Free-standing ultra-thin carbon nanofiber films with controllable thickness for lithium ion batteries
    Yue, Chenxi
    Yang, Kejia
    He, Dan
    Zheng, Weiyue
    Tang, Yi
    Zeng, Xianguang
    Yu, Jianglong
    Chen, Jian
    [J]. SURFACES AND INTERFACES, 2024, 48
  • [17] A Novel In Vitro Wound Healing Assay Using Free-Standing, Ultra-Thin PDMS Membranes
    Uysal, Karya
    Firat, Ipek Seda
    Creutz, Till
    Aydin, Inci Cansu
    Artmann, Gerhard M.
    Teusch, Nicole
    Temiz Artmann, Ayseguel
    [J]. MEMBRANES, 2023, 13 (01)
  • [18] Sacrificial Layer and Supporting Layer Techniques for the Fabrication of Ultra-Thin Free-Standing PEDOT:PSS Nanosheets
    Greco, Francesco
    Zucca, Alessandra
    Taccola, Silvia
    Menciassi, Arianna
    Dario, Paolo
    Mattoli, Virgilio
    [J]. MULTIFUNCTIONAL POLYMER-BASED MATERIALS, 2012, 1403 : 253 - 258
  • [19] Fabrication of ultra-thin free-standing chromium foils supported by a Si3N4 membrane-structure with search pattern
    Stepanov, IS
    van Aken, RH
    Zuiddam, MR
    Hagen, CW
    [J]. MICROELECTRONIC ENGINEERING, 1999, 46 (1-4) : 435 - 438
  • [20] Development of an in vitro 3D choroidal neovascularization model using chemically induced hypoxia through an ultra-thin, free-standing nanofiber membrane
    Park, Sang Min
    Lee, Kyoung-pil
    Huh, Man-Il
    Eom, Seongsu
    Park, Byeong-ung
    Kim, Ki Hean
    Park, Dong Ho
    Kim, Dong Sung
    Kim, Hong Kyun
    [J]. MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 104