Design of microfluidic channels separated by an ultra-thin free-standing dielectric membrane

被引:0
|
作者
Michal Tencer
Pierre Berini
机构
[1] University of Ottawa,School of Information Technology and Engineering
[2] MST Consulting,undefined
[3] Spectalis Corp.,undefined
来源
关键词
Residual Stress; Pressure Drop; Point Force; Metal Stripe; Zehnder Interferometer;
D O I
暂无
中图分类号
学科分类号
摘要
A microfluidic (MF) surface plasmon polariton sensor featuring a gold Mach–Zehnder interferometer on an ultra-thin (20–35 nm) dielectric membrane is described. While the presence of the membrane is required to maintain a near mirror symmetry of the dielectric properties of the medium on either side of the interferometer, it is a source of unique challenges in the MF system design. The pressure required to drive the fluid flow in microchannels causes deflection whose value depends on the membrane’s residual stress in the low pressure range and on its modulus at the higher pressure range. Depending on the empirical membrane strength which would meet the required equipment reliability, narrow fluidic channels may require tight dimensional tolerances to maintain the pressure difference across the membrane below a critical value. With wider channels (≥100 μm) dimensional tolerances are relaxed even with relatively weak membranes.
引用
收藏
页码:17 / 26
页数:9
相关论文
共 50 条
  • [1] Design of microfluidic channels separated by an ultra-thin free-standing dielectric membrane
    Tencer, Michal
    Berini, Pierre
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2009, 6 (01) : 17 - 26
  • [2] Ultra-thin, gas permeable free-standing and composite membranes for microfluidic lung assist devices
    Sreenivasan, Ramaswamy
    Bassett, Erik K.
    Hoganson, David M.
    Vacanti, Joseph P.
    Gleason, Karen K.
    [J]. BIOMATERIALS, 2011, 32 (16) : 3883 - 3889
  • [3] Photosensitive free-standing ultra-thin carbyne–gold films
    Vlad Samyshkin
    Anastasia Lelekova
    Anton Osipov
    Dmitrii Bukharov
    Igor Skryabin
    Sergey Arakelian
    Alexey Kucherik
    Stella Kutrovskaya
    [J]. Optical and Quantum Electronics, 2019, 51
  • [4] Ultra-thin conductive free-standing PEDOT/PSS nanofilms
    Greco, Francesco
    Zucca, Alessandra
    Taccola, Silvia
    Menciassi, Arianna
    Fujie, Toshinori
    Haniuda, Hiroki
    Takeoka, Shinji
    Dario, Paolo
    Mattoli, Virgilio
    [J]. SOFT MATTER, 2011, 7 (22) : 10642 - 10650
  • [5] Ultra-thin, Free-Standing Proton-Conducting Membrane with Organic/Inorganic Sandwich Structure
    Li, Haibin
    Yi, Man
    Jiang, Fengjing
    [J]. MACROMOLECULAR CHEMISTRY AND PHYSICS, 2010, 211 (08) : 863 - 868
  • [6] Photosensitive free-standing ultra-thin carbyne-gold films
    Samyshkin, Vlad
    Lelekova, Anastasia
    Osipov, Anton
    Bukharov, Dmitrii
    Skryabin, Igor
    Arakelian, Sergey
    Kucherik, Alexey
    Kutrovskaya, Stella
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2019, 51 (12)
  • [7] Electrooptic characteristics of free-standing chiral smectic ultra-thin film
    Uto, S
    Ohtsuki, H
    Ozaki, M
    Yoshino, K
    [J]. MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1997, 304 : 377 - 381
  • [8] Epitaxial growth of vertically free-standing ultra-thin silicon nanowires
    Zhou, Qingwei
    Liu, Liwei
    Gao, Xingsen
    Chen, Lijun
    Senz, Stephan
    Zhang, Zhang
    Liu, Junming
    [J]. NANOTECHNOLOGY, 2015, 26 (07)
  • [9] Calculation of the specific heat in ultra-thin free-standing silicon membranes
    Chavez, E.
    Cuffe, J.
    Alzina, F.
    Sotomayor Torres, C. M.
    [J]. 6TH EUROPEAN THERMAL SCIENCES CONFERENCE (EUROTHERM 2012), 2012, 395
  • [10] Facile and scalable patterning of sublithographic scale uniform nanowires by ultra-thin AAO free-standing membrane
    Meng, Gang
    Yanagida, Takeshi
    Nagashima, Kazuki
    Yanagishita, Takashi
    Kanai, Masaki
    Oka, Keisuke
    Klamchuen, Annop
    Rahong, Sakon
    Horprathum, Mati
    Xu, Bo
    Zhuge, Fuwei
    He, Yong
    Masuda, Hideki
    Kawai, Tomoji
    [J]. RSC ADVANCES, 2012, 2 (28) : 10618 - 10623