Positive Solutions for a System of Discrete Boundary Value Problem

被引:0
|
作者
Youzheng Ding
Jiafa Xu
Zhongli Wei
机构
[1] Shandong Jianzhu University,Department of Mathematics
[2] Shandong University,School of Mathematics
关键词
Boundary value problem; Positive solution; Fixed point theorem; Discrete systems; Concave function and convex function; 34B18; 39A12; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the existence and multiplicity of positive solutions for a system of second-order discrete boundary value problem. The main results are obtained via Jensen’s inequalities, properties of concave and convex functions, and the Krasnosel’skii-Zabreiko fixed point theorem. Furthermore, concave and convex functions are employed to emphasize the coupling behaviors of nonlinear terms f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} and g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} and we provide two explicit examples to illustrate our main results and the coupling behaviors.
引用
收藏
页码:1207 / 1221
页数:14
相关论文
共 50 条