Positive Solutions of a General Discrete Dirichlet Boundary Value Problem

被引:1
|
作者
Li, Xinfu [1 ]
Zhang, Guang [1 ]
机构
[1] Tianjin Univ Commerce, Sch Sci, Tianjin 300134, Peoples R China
基金
中国国家自然科学基金;
关键词
NONLINEAR ALGEBRAIC SYSTEM; PARTIAL DIFFERENCE-EQUATIONS; MONOTONE ITERATIVE METHODS; NUMERICAL-SOLUTIONS; NONTRIVIAL SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE; EIGENVALUE; PARAMETER; UNIQUENESS;
D O I
10.1155/2016/7456937
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A steady state equation of the discrete heat diffusion can be obtained by the heat diffusion of particles or the difference method of the elliptic equations. In this paper, the nonexistence, existence, and uniqueness of positive solutions for a general discrete Dirichlet boundary value problem are considered by using the maximum principle, eigenvalue method, sub-and supersolution technique, and monotone method. All obtained results are new and valid on any n-dimension finite lattice point domain. To the best of our knowledge, they are better than the results of the corresponding partial differential equations. In particular, the methods of proof are different.
引用
收藏
页数:7
相关论文
共 50 条