Weak Dual Equivalence for Polynomials

被引:0
|
作者
Sami Assaf
机构
[1] University of Southern California,Department of Mathematics
来源
Annals of Combinatorics | 2022年 / 26卷
关键词
Dual equivalence; Key polynomials; Slide polynomials; Schubert polynomials; Primary 05E05; Secondary 05A15; 05A19; 05E10; 05E18; 14N15;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce weak dual equivalence and use it to introduce skew key polynomials which, when skewed by a partition, expand nonnegatively in the key basis. We also give a new nonnegative Littlewood–Richardson rule for the key positive of the product of a key polynomial and a Schur polynomial, recovering a result of Haglund, Luoto, Mason, and van Willigenburg.
引用
收藏
页码:571 / 591
页数:20
相关论文
共 50 条
  • [21] Weak equivalence for constraint sets
    van, Denneheuvel, Sieger
    Kwast, Karen L.
    IJCAI, Proceedings of the International Joint Conference on Artificial Intelligence, 1600, 2
  • [22] ON THE EQUIVALENCE OF WEAK AND SCHAUDER BASES
    ORIHUELA, J
    ARCHIV DER MATHEMATIK, 1986, 46 (05) : 447 - 452
  • [23] PRESERVATION OF WEAK ORDER EQUIVALENCE
    JANOWITZ, MF
    STINEBRICKNER, R
    MATHEMATICAL SOCIAL SCIENCES, 1993, 25 (02) : 181 - 197
  • [24] Weak equivalence of internal categories
    Betti, R
    APPLIED CATEGORICAL STRUCTURES, 2000, 8 (1-2) : 307 - 316
  • [25] EQUIVALENCE OF WEAK AND SCHAUDER BASIS
    DEWILDE, M
    STUDIA MATHEMATICA, 1970, 38 (1-5) : 457 - &
  • [26] Partial Models and Weak Equivalence
    Bonifacio, Adilson Luiz
    Moura, Arnaldo Vieira
    THEORETICAL ASPECTS OF COMPUTING - ICTAC 2014, 2014, 8687 : 80 - 96
  • [27] Testing the weak equivalence principle
    Nobili, Anna M.
    Comandi, Gian Luca
    Pegna, Raffaello
    Bramanti, Donato
    Doravari, Suresh
    Maccarone, Francesco
    Lucchesi, David M.
    RELATIVITY IN FUNDAMENTAL ASTRONOMY: DYNAMICS, REFERENCE FRAMES, AND DATA ANALYSIS, 2010, (261): : 390 - 401
  • [28] Testing Equivalence of Polynomials under Shifts
    Dvir, Zeev
    de Oliveira, Rafael Mendes
    Shpilka, Amir
    AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT I, 2014, 8572 : 417 - 428
  • [29] EQUIVALENCE OF LINEAR OPERATOR POLYNOMIALS.
    Rodman, Leiba
    Welding in the World, Le Soudage Dans Le Monde, 1979, : 389 - 392
  • [30] Equivalence of Hardy submodules generated by polynomials
    Guo, KY
    JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 178 (02) : 343 - 371