Du Fort–Frankel finite difference scheme for Burgers equation

被引:4
|
作者
Pandey K. [1 ]
Verma L. [2 ]
Verma A.K. [2 ]
机构
[1] Department of Mathematics and Astronomy, University of Lucknow, Lucknow
[2] Department of Mathematics, BITS Pilani, Pilani
关键词
65N06;
D O I
10.1007/s40065-012-0050-1
中图分类号
学科分类号
摘要
In this paper we apply the Du Fort–Frankel finite difference scheme on Burgers equation and solve three test problems. We calculate the numerical solutions using Mathematica 7.0 for different values of viscosity. We have considered smallest value of viscosity as 10−4 and observe that the numerical solutions are in good agreement with the exact solution. [Figure not available: see fulltext.] © 2012, The Author(s).
引用
收藏
页码:91 / 101
页数:10
相关论文
共 50 条
  • [41] Lie Symmetry Preservation by Finite Difference Schemes for the Burgers Equation
    Chhay, Marx
    Hamdouni, Aziz
    [J]. SYMMETRY-BASEL, 2010, 2 (02): : 868 - 883
  • [42] SPECTRAL AND FINITE-DIFFERENCE SOLUTIONS OF THE BURGERS-EQUATION
    BASDEVANT, C
    DEVILLE, M
    HALDENWANG, P
    LACROIX, JM
    OUAZZANI, J
    PEYRET, R
    ORLANDI, P
    PATERA, AT
    [J]. COMPUTERS & FLUIDS, 1986, 14 (01) : 23 - 41
  • [43] NOTE ON FINITE-DIFFERENCE APPROXIMATIONS TO BURGERS-EQUATION
    AREF, H
    DARIPA, PK
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (04): : 856 - 864
  • [44] Oblique Du-Fort Frankel Beam Propagation Method
    Chan, Ken
    Sewell, Philip
    Vukovic, Ana
    Benson, Trevor
    [J]. ADVANCES IN OPTOELECTRONICS, 2011, 2011
  • [45] A Petrov-Galerkin finite element scheme for Burgers' equation
    Gardner, LRT
    Gardner, GA
    Dogan, A
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1997, 22 (2C): : 99 - 109
  • [46] Energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon equation and coupled sine-Gordon equations
    Deng, Dingwen
    Chen, Jingliang
    Wang, Qihong
    [J]. NUMERICAL ALGORITHMS, 2023, 93 (03) : 1045 - 1081
  • [47] Energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon equation and coupled sine-Gordon equations
    Dingwen Deng
    Jingliang Chen
    Qihong Wang
    [J]. Numerical Algorithms, 2023, 93 : 1045 - 1081
  • [48] Numerical solutions of nonlinear Burgers-Huxley equation through the Richtmyer type nonstandard finite difference scheme
    Izadi, F.
    Najafi, H. Saberi
    Sheikhani, A. H. Refahi
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 1507 - 1518
  • [49] A Multilevel Finite Difference Scheme for One-Dimensional Burgers Equation Derived from the Lattice Boltzmann Method
    Li, Qiaojie
    Zheng, Zhoushun
    Wang, Shuang
    Liu, Jiankang
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [50] Finite difference scheme for the Landau–Lifshitz equation
    Atsushi Fuwa
    Tetsuya Ishiwata
    Masayoshi Tsutsumi
    [J]. Japan Journal of Industrial and Applied Mathematics, 2012, 29 : 83 - 110