Solution of a Class of Nonlinear Matrix Equations

被引:0
|
作者
Samik Pakhira
Snehasish Bose
Sk Monowar Hossein
机构
[1] Aliah University,Department of Mathematics and Statistics
[2] Indian Statistical Institute,Statistics and Mathematics Unit
关键词
Matrix equation; Fixed point; Partially ordered set; 15A24; 47H10; 47H09;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we present several necessary and sufficient conditions for the existence of Hermitian positive definite solutions of nonlinear matrix equations of the form Xs+A∗X-tA+B∗X-pB=Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^s+A^*X^{-t}A+B^*X^{-p}B=Q$$\end{document}, where s,t,p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s,t,p \ge 1$$\end{document}, A, B are nonsingular matrices and Q is a Hermitian positive definite matrix. We derive some iterations to compute the solutions followed by some examples. In this context, we also discuss about the maximal and the minimal Hermitian positive definite solution of this particular nonlinear matrix equation.
引用
收藏
页码:415 / 434
页数:19
相关论文
共 50 条