Numerical simulations of heavily polluted fine-grained sediment remobilization using 1D, 1D+, and 2D channel schematization

被引:0
|
作者
Jana Kaiglová
Jakub Langhammer
Petr Jiřinec
Bohumír Janský
Dagmar Chalupová
机构
[1] Charles University in Prague,Department of Physical Geography and Geoecology, Faculty of Science
[2] DHI a.s.,undefined
来源
Environmental Monitoring and Assessment | 2015年 / 187卷
关键词
Cohesive sediment; Remobilization; Floods; Modeling; Pollution; Bílina River;
D O I
暂无
中图分类号
学科分类号
摘要
This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method’s suitability is limited by the channel properties.
引用
收藏
相关论文
共 50 条
  • [22] CFD simulations of bubble column reactors: 1D, 2D and 3D approach
    Ekambara, K
    Dhotre, MT
    Joshi, JB
    CHEMICAL ENGINEERING SCIENCE, 2005, 60 (23) : 6733 - 6746
  • [23] Application of 1D model for overland flow simulations on 2D complex domains
    Zhang, Yaoxin
    Al-Hamdan, Mohammad Z.
    Bingner, Ronald L.
    Chao, Xiaobo
    Langendoen, Eddy
    O'Reilly, Andrew M.
    Vieira, Dalmo A. N.
    ADVANCES IN WATER RESOURCES, 2024, 188
  • [24] 1D and 2D porous media fixed bed reactor simulations with DUO
    Daymo, Eric A.
    Tonkovich, Anna Lee
    Hettel, Matthias
    Shirsath, Akash
    MECCANICA, 2024,
  • [25] Comparison of 1D/1D and 1D/2D Coupled (Sewer/Surface) Hydraulic Models for Urban Flood Simulation
    Leandro, Jorge
    Chen, Albert S.
    Djordjevic, Slobodan
    Savic, Dragan A.
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2009, 135 (06): : 495 - 504
  • [26] Photoswitchable Conversion of 1D and 2D Nanostructures
    Liu Zhong-Fan
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (10) : 1929 - 1929
  • [27] 1D and 2D Materials, and Flexible Substrates
    Yang, Eui-Hyeok
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS XI, 2019, 10982
  • [28] Revisiting the 1D and 2D Laplace Transforms
    Ortigueira, Manuel Duarte
    Machado, Jose Tenreiro
    MATHEMATICS, 2020, 8 (08)
  • [29] The 2D Coulomb gas on a 1D lattice
    Narayan, O
    Shastry, BS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (07): : 1131 - 1146
  • [30] Method of fabrication of 1D and 2D gratings
    Stepanov, DY
    Surve, SR
    Balon, SAP
    LASER BEAM CONTROL AND APPLICATIONS, 2006, 6101