Conservation laws of some lattice equations

被引:0
|
作者
Junwei Cheng
Dajun Zhang
机构
[1] Shanghai University,Department of Mathematics
来源
关键词
Conservation law; Lax pair; multi-dimensionally consistent lattice equation; discrete integrable system; 39-04; 39A05; 39A14;
D O I
暂无
中图分类号
学科分类号
摘要
We derive infinitely many conservation laws for some multidimensionally consistent lattice equations from their Lax pairs. These lattice equations are the Nijhoff-Quispel-Capel equation, lattice Boussinesq equation, lattice nonlinear Schrödinger equation, modified lattice Boussinesq equation, Hietarinta’s Boussinesq-type equations, Schwarzian lattice Boussinesq equation, and Toda-modified lattice Boussinesq equation.
引用
收藏
页码:1001 / 1016
页数:15
相关论文
共 50 条
  • [41] Conservation laws of differential equations in finance
    Qin, MC
    Mei, FX
    Shang, M
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (06) : 967 - 968
  • [42] ON CONSERVATION-LAWS FOR THE PLASTICITY EQUATIONS
    SENASHOV, SI
    DOKLADY AKADEMII NAUK SSSR, 1991, 320 (03): : 606 - 608
  • [43] Conservation laws of semidiscrete Hamiltonian equations
    Kozlov, R
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (04) : 1708 - 1727
  • [44] CONSERVATION-LAWS FOR NONLINEAR EQUATIONS
    VLADIMIROV, VS
    VOLOVICH, IV
    RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (04) : 13 - 24
  • [45] CONSERVATION LAWS FOR COUPLED WAVE EQUATIONS
    Masemola, P.
    Kara, A. H.
    Bhrawy, A. H.
    Biswas, A.
    ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (3-4): : 367 - 377
  • [46] Conservation Laws of Differential Equations in Finance
    QIN Mao-Chang
    MEI Feng--Xiang
    SHANG Mei School of Science
    Communications in Theoretical Physics, 2005, 44 (12) : 967 - 968
  • [48] Symmetry and conservation laws of differential equations
    Jones, GL
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1997, 112 (07): : 1053 - 1059
  • [49] Conservation Laws of The Generalized Riemann Equations
    Gao B.
    Tian K.
    Liu Q.P.
    Feng L.
    Journal of Nonlinear Mathematical Physics, 2018, 25 (1) : 122 - 135
  • [50] Conservation laws of surfactant transport equations
    Kallendorf, Christina
    Cheviakov, Alexei F.
    Oberlack, Martin
    Wang, Yongqi
    PHYSICS OF FLUIDS, 2012, 24 (10)