Sets of points of uniform convergence for sequences of quasicontinuous functions and for convergent sequences of functions are characterized. It is proved that a subset of a metric space is the set of points of uniform convergence for some convergent sequence of functions if and only if it is a Gδ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G_{\delta }$$\end{document}-set containing all isolated points. On the other hand, an arbitrary Gδ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G_{\delta }$$\end{document}-set is equal to the set of points of uniform convergence of some sequence of quasicontinuous functions. In conclusion, a new characterization of Baire spaces in the class of all metric spaces is given.