This paper justifies the compressible Euler and acoustic limits from quantum Boltzmann equation with Fermi–Dirac statistics rigorously. By employing Hilbert expansion, in particular analyzing the nonlinear implicit transformation between the classical form of compressible Euler equations and the one obtained directly from BFD, and some new type of Grad–Caflisch type decay estimate of the linearized collision operator, we establish the compressible Euler limit from scaled BFD equation, which was formally derived by Zakrevskiy in (Kinetic models in the near-equilibrium regime. Thesis at Polytechnique, 2015) by moment method. Consequently, the acoustic limit is obtained in optimal scaling with respect to Knudsen number.
机构:
Inria Paris, Inria, Team ANGE, 2 Rue Simone Iff, F-75012 Paris, France
Sorbonne Univ, Lab Jacques Louis Lions, F-75005 Paris, FranceInria Paris, Inria, Team ANGE, 2 Rue Simone Iff, F-75012 Paris, France
Dubois, Juliette
Imperiale, Sebastien
论文数: 0引用数: 0
h-index: 0
机构:
Inria Saclay, Inria, M3DISIM Team, 1 Rue Honore Estienne Orves, F-91120 Palaiseau, FranceInria Paris, Inria, Team ANGE, 2 Rue Simone Iff, F-75012 Paris, France
Imperiale, Sebastien
论文数: 引用数:
h-index:
机构:
Mangeney, Anne
Bouchut, Francois
论文数: 0引用数: 0
h-index: 0
机构:
Univ Gustave Eiffel, CNRS, Lab Anal & Math Appliqueees, F-77420 Marne La Valleee, FranceInria Paris, Inria, Team ANGE, 2 Rue Simone Iff, F-75012 Paris, France
Bouchut, Francois
Sainte-Marie, Jacques
论文数: 0引用数: 0
h-index: 0
机构:
Inria Paris, Inria, Team ANGE, 2 Rue Simone Iff, F-75012 Paris, France
Sorbonne Univ, Lab Jacques Louis Lions, F-75005 Paris, FranceInria Paris, Inria, Team ANGE, 2 Rue Simone Iff, F-75012 Paris, France